Курс практической механики с 1866 г. в Петербургском университете читал М.Ф. Окатов (1829—1901), окончивший в 1848 г. Московский университет. Магистерская диссертация Окатова, защищенная в 1865 г. в Москве, была посвящена аналитической теории равновесия различных механических систем, докторская (1867), как и большинство его последующих работ, — теории упругости.
В Московском университете, после выхода в 1864 г. в отставку Брашмана курс теоретической механики недолго читал В.Я. Цингер (1836—1907), а с 1866 г. Ф.А. Слудский (1841—1897). Слудский окончил университет в 1860 г. и был оставлен при кафедре астрономии. В 1865 г. он представил две докторские диссертации: одну по астрономии и другую — «О равновесии и движении жидкости при взаимодействии ее частиц». Лекции по теоретической механике Слудский вел в течение 20 лет — до 1886 г. На этих лекциях сказалось влияние Остроградского, Брашмана и Сомова. В предисловии к своему «Курсу теоретической механики» (М., 1881) Слудскийсам подчеркивал, что, высоко ценя аналитический метод изложения, он следовал в преподавании примерам Остроградского и Брашмана. Впрочем, Слудский вводил и чисто геометрические представления, признавая некоторую ограниченность аналитического метода.
Курс практической механики в Московском университете вел с 1874 г. ученик Брашмана и Давыдова профессор Ф.Е. Орлов (1843—1892). В свою очередь учеником Слудского и Орлова был Н.Е. Жуковский, сменивший Слудского на кафедре теоретической механики в 1886 г.
Воспитанники Московского и Петербургского университетов работали в других высших учебных заведениях России. Наиболее выдающимися механиками Киевского университета, открытого в 1835 г., были И.И. Рахманинов, Г.К. Суслов и П.В. Воронец. И. И Рахманинову принадлежит курс «Основания теоретической динамики», опубликованный в 1872—1873 гг.
Большой курс теоретической механики был написан Г.К. Сусловым (1857—1935). По окончании Петербургского университета Суслов был оставлен при университете для подготовки к профессорской деятельности. В 1888 г., после защиты магистерской диссертации «Об уравнениях с частными производными для несвободного движения», Суслов был избран экстраординарным профессором механики Киевского университета. В 1891 г. он защитил при Московском университете докторскую диссертацию «О силовой функции, допускающей данные частные интегралы». В этой работе Суслов изучал так называемую прямую задачу динамики — определение сил по заданным свойствам движения. В работе Суслова дается общий прием решения этой задачи для систем с произвольным числом степеней свободы при условии, что заданные силы обладают силовой функцией. П.В. Воронец (1871—1922), развивая идеи Чаплыгина, дал обобщенное дифференциальное уравнение движения неголономных систем.
В Киеве же работал с 1858 г. на кафедре физики М.И. Талызин (родился в 1819 г. — год смерти неизвестен), в 1840 г. окончивший Петербургский университет. Темой магистерской диссертации его была теория приливов и отливов (1843); ему принадлежат также исследования по общим принципам механики.
В Харьковском университете преподавание механики началось только в 1807 г., причем согласно уставу 1804 г., руководство всеми разделами механики выполнялось кафедрой прикладной математики; этим объясняется тот факт, что из всех русских университетских кафедр механики кафедра Харьковского университета была наиболее математической. В рассматриваемый период механику здесь читали И.Д. Соколов и воспитанник Казанского университета В.Г. Имшенецкий (1832—1892). Основная работа Имшенецкого по механике посвящена задаче Ж. Бертрана (1822—1900), которую он решил до конца в статье «Определение силы, движущей по коническому сечению материальную точку, в функции ее координат» (1879). В 1882 г. Имшенецкий был избран академиком и переехал в Петербург. Возглавлявшаяся им кафедра теоретической механики была замещена лишь в 1885 г. А.М. Ляпуновым. В 1902 г. Ляпунова сменил его ученик по Харьковскому университету В.А. Стеклов.
В Казанском университете лекции по теоретической механике долгое время читал Николай Иванович Лобачевский (1792—1856). В 1885 г. созданную в то время кафедру прикладной математики занял профессор П.И. Котельников (1809—1879), который начал читать лекции по аналитической механике и статике. С 1879 по 1889 г. преподавание теоретической механики в Казанском университете вел ученик Слудского И.С. Громека (1851—1889), работа которого «Некоторые случаи движения несжимаемой жидкости» (1881) содержит новую форму уравнений гидродинамики, выраженных через компоненты вихря. С 1889 по 1893 г. теоретическую механику преподавал Г.Н. Шебуев — горячий сторонник векторного изложения, а с 1892/1893 учебного года — Д.Н. Зейлигер и А.П. Котельников.
Если в университетах основное внимание обращалось на проблемы теоретической механики, то в научной работе, проводившейся в технических учебных заведениях, нашли отражение вопросы промышленной, а также военной техники.
В Московском техническом училище многие годы исключительно плодотворно работал Н.Е. Жуковский. В Петербургской артиллерийской академии исследованиями по баллистике занимался профессор Н.В. Маиевский, окончивший в 1843 г. Московский университет. Основная работа Маиевского относится к изучению законов движения вращающихся продолговатых снарядов. В той же Артиллерийской академии и в Петербургском технологическом институте работал профессор И.А. Вышнеградский, много сделавший для развития технического обучения в России. Ему, как уже говорилось, принадлежит ряд работ по теории автоматического регулирования. С Военно-морской академией связаны работы замечательного механика, судостроителя и математика А.Н. Крылова. В Петербургском и Киевском политехнических институтах работал крупный специалист по теории упругости и сопротивлению материалов С.П. Тимошенко, в 1900 г. окончивший Петербургский университет.
После этого краткого обзора состояния преподавания механики в высшей школе перейдем к рассмотрению важнейших достижений русских ученых в области теоретической и прикладной механики.
ТЕОРИЯ МЕХАНИЗМОВ
В рассматриваемый период в России было положено начало теории одного из важнейших отделов прикладной механики — теории механизмов. Это было сделано в середине XIX в. П.Л. Чебышевым. В области математики ему принадлежат основополагающие результаты по теории чисел, теории вероятностей, интегрированию иррациональных функций и созданию новой теории наилучшего приближения функций. К этой теории Чебышев пришел, отправляясь от некоторых практических задач теории механизмов. Для механика имя Чебышева связано прежде всего с его работами в этом направлении и в меньшей степени — с работами по баллистике.
Пафнутий Львович Чебышев (1821—1894) родился в с. Окатове Калужской губернии, учился дома, а затем поступил в Московский университет, где слушал лекции Н.Д. Брашмана, привлекшего талантливого студента к самостоятельной научной работе. В 1841 г. Чебышев окончил университет, через два года вышла в свет его первая научная работа, а в 1845 г. он защитил магистерскую диссертацию по теории вероятностей. С 1847 г. Чебышев начал читать лекции в Петербургском университете. Здесь он сблизился с В.Я. Буняковским и знакомым ему ранее И.И. Сомовым. Им троим (и более всего Чебышеву) обязаны своим расцветом математические науки в Петербургском университете. В университете Чебышев работал 35 лет, до 1882 г., и воспитал здесь/ плеяду замечательных учеников, составивших ядро знаменитой Петербургской математической школы.
Вскоре после приезда в Петербург Чебышев защитил докторскую диссертацию — «Теория сравнения» (1849). После этого в «Записках Академии наук» и других журналах стали регулярно появляться статьи Чебышева, которые быстро принесли ему широкую известность. В 1853 г. он был избран членом Петербургской академии наук, затем иностранным членом Берлинской и Парижской академий (первый из русских после Петра I), Лондонского королевского общества и т. д.
Чебышев не ограничивался интенсивной деятельностью в Академии наук и университете. Он много лет активно работал в Артиллерийском отделении Военно-ученого комитета и в Ученом комитете министерства народного просвещения. Научное творчество он не прекращал почти до самой смерти.
Для творчества Чебышева характерно органическое сочетание прикладных и собственно теоретических интересов. Как отмечал В.А. Стеклов, большой интерес к вопросам практики иногда приводил в удивление лиц, знавших Чебышева как ученого, работавшего в области отвлеченного знания: теории вероятностей, интегрирования функций, теории чисел. Но это обстоятельство получает естественное объяснение, если вникнуть в основы тех руководящих идей, которые служили первоисточником открытий Чебышева. Сам Чебышев писал: «Сближение теории с практикой дает самые благотворные результаты, и не одна только практика от этого выигрывает; сами науки развиваются под влиянием ее, она открывает им новые предметы для исследования или новые стороны в предметах, давно известных».{212}