С интересующими нас вопросами тесно связаны две работы. Одна из них — знаменитая книга выдающегося математика, физика и египтолога *) Жана Батиста Жозефа Фурье (1768—1830) «Аналитическая теория теплоты» (1822 г.), посвященная решению задачи о распространении тепла; в ней был детально разработан и применен к решению физических задач метод разложения функций на синусоидальные составляющие (разложение Фурье). От этой работы обычно отсчитывают зарождение математической физики как самостоятельной науки. Ее значение для теории колебательных и волновых процессов огромно — в течение более чем столетия основным способом исследования волновых процессов стало разложение сложных волн на простые синусоидальные (гармонические) волны, или «гармоники» (от «гармонии» в музыке).
*) После наполеоновского похода в Египет он составил «Описание Египта» и собрал небольшую, но ценную коллекцию египетских древностей. Фурье направлял первые шаги юного Жана Франсуа Шампольона, гениального дешифровщика иероглифического письма, основоположника египтологии. Дешифровкой иероглифов увлекался не без успеха и Томас Юнг.
Другая работа — доклад двадцатишестилетнего Гельмгольца «О сохранении силы», сделанный в 1847 г. на заседании основанного им Физического общества в Берлине. Герман Людвиг Фердинанд Гельмгольц (1821—1894) по праву считается одним из величайших естествоиспытателей, а эту его работу некоторые историки науки ставят в один ряд с наиболее выдающимися трудами ученых, заложивших основы естественных наук. В ней идет речь о наиболее общей формулировке принципа сохранения энергии (тогда ее называли «силой») для механических, тепловых, электрических («гальванических») и магнитных явлений, включая и процессы в «организованном существе». Для нас особенно интересно, что здесь Гельмгольц впервые отметил колебательный характер разряда лейденской банки и написал уравнение, из которого вскоре У. Томсон вывел формулу для периода электромагнитных колебаний в колебательном контуре.
В этой небольшой работе можно разглядеть намеки на будущие замечательные исследования Гельмгольца. Даже простое перечисление его достижений в физике, гидромеханике, математике, анатомии, физиологии и психофизиологии увело бы нас очень далеко в сторону от основной темы нашего рассказа. Упомянем лишь теорию вихрей в жидкости, теорию происхождения морских волн и первое определение скорости распространения импульса в нерве. Все эти теории, как мы вскоре увидим, имеют самое непосредственное отношение к современным исследованиям солитонов. Из других его идей необходимо упомянуть впервые высказанное им в лекции, посвященной физическим воззрениям Фарадея (1881 г.), представление о существовании элементарного («наименьшего возможного») электрического заряда («электрических атомов»). На опыте электрон был обнаружен лишь шестнадцать лет спустя.
Обе описанные работы были теоретическими, они составили фундамент математической и теоретической физики. Окончательное становление этих наук связано, несомненно, с работами Максвелла, а в первой половине века чисто теоретический подход к физическим явлениям был, в общем-то, чужд большинству ученых. Физика считалась наукой чисто «опытной» и главными словами даже в названиях работ были «опыт», «основанный на опытах», «выведенные из опытов». Интересно, что сочинение Гельмгольца, которое и в наши дни можно считать образцом глубины и ясности изложения, не было принято физическим журналом как теоретическое и слишком большое по объему и было позднее выпущено в свет отдельной брошюрой. Незадолго до смерти Гельмгольц так говорил об истории создания своей самой знаменитой работы:
«Молодые люди всего охотнее берутся сразу за самые глубокие задачи, так и меня занял вопрос о загадочном существе жизненной силы... я нашел, что... теория жизненной силы... приписывает всякому живому телу свойства «вечного двигателя»... Просматривая сочинения Даниила Бернулли, Д'Аламбера и других математиков прошлого столетия... я натолкнулся на вопрос: «какие отношения должны существовать между различными силами природы, если принять, что «вечный двигатель» вообще невозможен и выполняются ли в действительности все эти соотношения...» Я намеревался только дать критическую оценку и систематику фактов в интересах физиологов. Для меня не было бы неожиданностью, если бы в конце концов сведущие люди сказали мне: «Да все это отлично известно. Чего хочет этот юный медик, распространяясь так подробно об этих вещах?» К моему удивлению, те авторитеты по физике, с которыми мне пришлось войти в соприкосновение, посмотрели на дело совершенно иначе. Они были склонны отвергать справедливость закона; среди той ревностной борьбы, какую они вели с натурфилософией Гегеля, и моя работа была сочтена за фантастическое умствование. Только математик Якоби признал связь между моими рассуждениями и мыслями математиков прошлого века, заинтересовался моим опытом и защищал меня от недоразумений».
Эти слова ярко характеризуют умонастроение и интересы многих ученых той эпохи. В таком сопротивлении научного общества новым идеям есть, конечно, закономерность и даже необходимость. Так что не будем торопиться осуждать Лапласа, не понимавшего Френеля, Вебера, не признававшего идей Фарадея, или Кельвина, противившегося признанию теории Максвелла, а лучше спросим себя, легко ли дается нам самим усвоение новых, непохожих на все, с чем мы свыклись, идей. Признаем, что некоторый консерватизм заложен в нашей человеческой природе, а значит, и в науке, которую делают люди. Говорят, что некий «здоровый консерватизм» даже необходим для развития науки, так как он препятствует распространению пустых фантазий. Однако это отнюдь не утешает, когда вспоминаешь о судьбах гениев, заглянувших в будущее, но не понятых и не признанных своей эпохой.
Твой век, дивясь тебе, пророчеств не постигИ с лестью смешивал безумные упреки.В. Брюсов
Может быть, самые яркие примеры такого конфликта с эпохой в интересующее нас время (около 1830 г.) мы видим в развитии математики. Лицо этой науки тогда определяли, вероятно, Гаусс и Коши, завершавшие вместе с другими постройку великого здания математического анализа, без которого современная наука просто немыслима. Но мы не можем забыть и о том, что в это же время, не оцененные современниками, умерли молодые Абель (1802—1829) и Галуа (1811—1832), что с 1826 по 1840 гг. публиковали свои работы по неевклидовой геометрии Лобачевский (1792—1856) и Бойяи (1802—1860), не дожившие до признания своих идей. Причины такого трагического непонимания глубоки и многообразны. Мы не можем углубляться в них, а приведем лишь еще один пример, важный для нашего рассказа.
Как мы увидим позже, судьба нашего героя, солитона, тесно связана с вычислительными машинами. Более того, история преподносит нам поразительное совпадение. В августе 1834 г., в то время, когда Рассел наблюдал уединенную волну, английский математик, экономист и инженер-изобретатель Чарльз Бэббедж (1792—1871) закончил разработку основных принципов своей «аналитической» машины, которые легли впоследствии в основу современных цифровых вычислительных машин. Идеи Бэббеджа далеко опередили свое время. Для реализации его мечты о постройке и использовании таких машин потребовалось более ста лет. В этом трудно винить современников Бэббеджа. Многие понимали необходимость вычислительных машин, но техника, наука и общество еще не созрели для осуществления его смелых проектов. Премьер-министр Англии сэр Роберт Пил, которому пришлось решать судьбу финансирования проекта, представленного Бэббеджем правительству, не был невеждой (он окончил Оксфорд первым по математике и классике). Он провел формально тщательное обсуждение проекта, но в результате пришел к выводу, что создание универсальной вычислительной машины не относится к первоочередным задачам британского правительства. Лишь в 1944 г. появились первые автоматические цифровые машины, и в английском журнале «Nature» («Природа») появилась статья под названием «Мечта Бэббеджа сбылась».
Наука и общество
Дружина ученых и писателей... всегда впереди во всех
набегах просвещения, на всех приступах образован-
ности. Не должно им малодушно негодовать на то,
что вечно им определено выносить первые выстрелы
и все невзгоды, все опасности.
А. С. Пушкин
Конечно, и успехи науки, и ее неудачи связаны с историческими условиями развития общества, на которых мы не можем задерживать внимание читателя. Не случайно именно в то время возник такой напор новых идей, что наука и общество не успевали их осваивать.