Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, т. е. понятие и его определение должны быть равны друг другу. Вернёмся к определению: «Астрономия – это наука о небесных телах», – которое является соразмерным. В этом примере определяемое понятие «астрономия» и определение: «…наука о небесных телах» находятся в отношении равнозначности: астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия. Определение является соразмерным тогда, когда между его первой частью (определяемым понятием) и второй (определением) можно поставить знак « = ». Если же между первой и второй частью определения ставится знак « > » или « < », то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества.
3. В определении не должно быть круга, т. е. в определении нельзя употреблять понятия, которые являются определяемыми. Например, в определении: «Клеветник – это человек, который занимается клеветой», – присутствует круг, поскольку понятие «клеветник» определяется через понятие «клевета», т. е. фактически – через само себя. Если бы, услышав приведённое определение, мы спросили, что такое клевета, нам могли бы ответить: «Клевета – это то, чем занимается клеветник». Присутствующий в определении круг (или тавтология, с греч. – повтор) приводит к тому, что содержание понятия не раскрывается, и определение является ошибочным. Однако наверняка найдутся люди, которые скажут, что из определения: «Клеветник – это человек, который занимается клеветой», – вполне понятно, и кто такой клеветник, и что такое клевета. Они могут так утверждать только потому, что им ранее было известно значение слов «клеветник» и «клевета». Станет ли понятно, что такое экзистенциализм из следующего кругового определения: «Экзистенциализм – это философское направление XX в., в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы»? Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: «Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы»?
4. Определение не должно быть двусмысленным, т. е. в нём нельзя употреблять слова (термины) в переносном значении. Вспомним хорошо знакомое с детства определение: «Лев – это царь зверей». В данном определении слово «царь» используется в переносном значении, но у него есть и прямое значение. Получается, что в определении употребляется одно слово, а возможных значений у него два, т. е. определение является двусмысленным (вновь нарушается логический закон тождества: одно слово, два значения: 1 ≠ 2).
Двусмысленность вполне уместна в качестве художественного приёма, но в определении она недопустима, поскольку содержание понятия в данном случае не раскрывается.
5. Определение не должно быть сложным и непонятным.
Рассмотрим следующее определение: «Энтропия – это термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу». Это определение взято не из научного доклада и не из докторской диссертации, а из учебника для студентов гуманитарных специальностей[2]. Данное определение не широкое и не узкое, в нём нет круга и двусмысленности, оно верно и с научной точки зрения. Это определение кажется безупречным с тем только исключением, что оно является сложным и непонятным для людей, которые не занимаются специально естественными науками, т. е. для большинства из нас. Определение должно быть понятным для того, кому оно адресовано, иначе при всей своей формальной правильности оно не будет раскрывать содержания понятия для своего адресата. Непонятные определения также называют некоммуникабельными, т. е. создающими преграды для общения между людьми.
6. Определение не должно быть только отрицательным. Например, определение: «Квадрат – это не треугольник», – является только отрицательным. Квадрат – это действительно не треугольник, но данное определение не раскрывает содержание понятия «квадрат», ведь, указав на то, чем не является объект, обозначенный определяемым понятием, мы не сказали, чем же он является (окружность, трапеция, пятиугольник – это тоже не квадраты). Определение может быть отрицательным в том случае, когда оно дополнено положительной частью. Например, определение: «Квадрат – это не треугольник, а прямоугольник, у которого все стороны равны», – правильное.
Проверьте себя:
1. Что такое определение понятия?
2. Чем отличаются явные определения от неявных? Придумайте по три примера явных и неявных определений.
3. Что такое реальные и номинальные определения? Как вы думаете, почему любое реальное определение можно свести к номинальному, и наоборот?
4. Что представляет собой классический способ определения понятия? Дайте определения каким-нибудь трём понятиям, пользуясь классическим способом.
5. Каковы основные правила определения понятия? Какие ошибки возникают при их нарушении? Приведите, подобрав самостоятельно, по три примера для каждой ошибки в определении понятия.
6. Найдите ошибки в приведённых ниже примерах определений:
1) Сутки – это отрезок времени, в течение которого Земля делает полный оборот вокруг своей оси.
2) Жанр – это устойчивая форма какого-либо произведения искусства.
3) Собака – это друг человека.
4) Творческое мышление – это мышление, которое обеспечивает решение творческих задач.
5) Революция – это крупное историческое событие, в результате которого в обществе меняется политическая власть.
1.6. Операция деления понятия
Деление понятия – это логическая операция, которая раскрывает его объём.
Деление понятия состоит из трёх частей: делимое понятие, результаты деления, основание деления (признак, по которому производится деление). Например, в следующем делении: «Люди бывают мужчинами и женщинами», – или, что то же самое: «Люди делятся на мужчин и женщин», – делимым является понятие «люди», результаты деления – это понятия «мужчины» и «женщины», а основание данного деления – пол, т. к. люди в нём разделены по половому признаку. В зависимости от основания деление может быть различным. Например: «Люди бывают высокими, низкими и среднего роста (основание деления – рост)», «Люди бывают монголоидами, европеоидами и негроидами (основание деления – раса)», «Люди бывают учителями, врачами, инженерами и т. д. (основание деления – профессия)». Иногда понятие делится дихотомически (с греч. – пополам) по типу: «A и не A». Например: «Люди бывают спортсменами и не спортсменами». Дихотомическое деление всегда правильное, т. е. в нём автоматически исключаются все возможные в делении ошибки, о которых речь пойдёт ниже.
Мы хорошо знаем, зачем нам нужна операция определения понятия: знакомство с новым предметом начинается с его определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций: разделений каких-то областей действительности на группы, части, виды и т. п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т. д.). Однако любая классификация – это не что иное, как логическая операция деления понятия. Классификации могут быть как обширными, подробными, научными, так и простыми, обыденными, повседневными. Когда мы говорим: «Люди делятся на мужчин и женщин» или «Учебные заведения бывают начальными, средними и высшими», – то создаём пусть маленькую и простую, но классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление.
Существует несколько логических правил деления. Нарушение хотя бы одного из них приводит к тому, что объём понятия не раскрывается и деление не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении:
1. Деление должно проводиться по одному основанию, т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: «Люди бывают мужчинами, женщинами и учителями», – используются два разных основания: пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания.