Построение математических моделей привело к созданию особого вида топологий – индукторных пространств. В них происходит отказ от симметричного вхождения точек в окрестности друг друга. Это позволило сформулировать на едином языке многие факты и теоремы, которые ранее требовали различных формулировок для непрерывных метрических и топологических пространств, дискретных графов и структур (частичных порядков). Интересным классом пространств являются конические пространства, в которых топология аналогична пространству Г. Минковского (множество последовательных миров, где каждый отдельно взятый момент – это самостоятельная реальность), что удобно для волновых, релятивистских моделей. Конические пространства могут объяснить и существование анизотропного пространства. Было известно, что линейные автоморфизмы таких пространств образуют группу Лоренца, или аттрактор Лоренца (он же фрактал). Однако известны и нелинейные автоморфизмы. При размерностях пространства, начиная с трех, все автоморфизмы конических пространств линейны. Отсюда следует, в частности, что волновые процессы в пространстве определяют его линейную структуру, если размерность достаточно велика. На примере коллоидных и живых систем можно видеть их синхронную работу при формообразовании. Они формируют автоморфизм структур с микро– до мегауровня, и задают форму организмам. По всей вероятности, этот же механизм задействован в образовании и светового конуса при конденсации белка и в коллоидальных средах.
Свойства пространства материальных объектов, достаточно доходчиво описываются топологией.
ТОПОЛОГИЯ, раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание.
ТОПОЛОГИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ одной геометрической фигуры на другую – есть отображение произвольной точки Р первой фигуры на точку Р` другой фигуры, которое удовлетворяет следующим условиям: 1) каждой точке Р первой фигуры должна соответствовать одна и только одна точка Р` второй фигуры, и наоборот; 2) отображение должно быть взаимно непрерывно. Например, имеются две точки Р и N, принадлежащие одной фигуре. Если при движении точки Р к точке N расстояние между ними стремится к нулю, то расстояние между точками Р` и N` другой фигуры тоже должно стремиться к нулю, и наоборот. То есть по большому счету это признаки зеркальной симметрии. Это относится к точкам, если же мы имеем дело с формами или точнее с фигурами, то мы сталкиваемся с ГОМЕОМОРФИЗМОМ. Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т. е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Это как-то проливает свет на странное свойство рака переводить нормальные клетки из одного топологического состояния в неуправляемое, беспрерывное и бессмертное. Кстати к вопросу о бессмертии. Исходя из этого же положения, можно констатировать неутешительный вывод, в многоклеточном организме нельзя долго вести «двойную» игру, омолаживать клетки и эффективно их контролировать. В динамической системе, при изменении со временем ее общей топологии и гомоморфизма, неизбежно наступает «поломка». Однако поиск «золотой середины» дело небесперспективное… Рак можно рассматривать как «вывих» части клеток из общего гомеоморфологического портрета организма, или как его топологический дефект.
Область, в которой любую замкнутую простую (т. е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь, все время в этой области, называется односвязной, а соответствующее свойство области – односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области – многосвязностью. Вывод: находиться постоянно и диссимметрично между этими «областями» долгое время – есть основное свойство живого. Рак нарушает этот принцип, переходя в односвязное состояние. Его фрактальная размерность стремится к единице. Эти факты говорят еще и о том, что он начинается из бесконечно малой точки, которая вероятнее всего является либо неспаренным электроном, либо фотоном, либо центром торсионного или наномагнитного вихря. Не исключено, что этой точкой или линией являются представители фантомного мира, т. н. графалы и фракталы… Но наиболее вероятным центром автокаталитического процесса под названием рак является «раковый белок». Кажется, что между живым веществом, геометрией, нумерологией и физикой существуют непреодолимые границы, но это не так. Они перетекают друг в друга просто и без напряжений при определенных условиях. Объяснением, как это может происходить, служит известная в математике проблема Пуанкаре. Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязная, а поверхность бублика – нет. Доказать, что односвязная только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор. Проблема Пуанкаре относится к области так называемой топологии многообразий – особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел – сферы (поверхности шара) или тора (поверхности бублика). Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую, т. е. они не энантиомерны. Говоря простым языком, сфера и тор различаются по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга – тору. Иными словами, любая замкнутая двухмерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера. Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей. Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех– и четырехмерными. Очевидно, отсутствие наглядности – далеко не главная трудность, с которой сталкиваются математики в своих исследованиях. Задача, подобная проблеме Пуанкаре, для размерностей пять и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение предлагает Григорий Перельман. Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию не только нового направления в геометрии, топологии, но и раскрытию тайны симметрии и диссимметрии живого. К нашей работе имеет прямое отношение не только проблема Пуанкаре, но и еще несколько гипотез, и в частности: гипотеза Ходжа и уравнения Янга-Миллса. В задачу данной книги не входит рассмотрение деталей всех математических работ, но их прикладное значение для биологии еще не оценено до конца. В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые «кирпичики», которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких «кирпичиков» и объектов. Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга-Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга-Миллса принята большинством физиков, несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц. Теперь мы имеем хоть какое-то представление о месте «перехода» геометрии в физику и обратно.