class="a">[256]. Ни в одной другой области науки не применяется такой невероятный стандарт. Например, если у вас диагностировали заболевание и врач сказала, что она на 95 % уверена, что данные клинических испытаний для предложенного лечения верны, вы примете лекарство, верно? Но физики элементарных частиц не посчитают это достаточным доказательством. Работая над такими длительными и крупными проектами, физики элементарных частиц хотят быть уверенными, что они не обманывают себя насчет того, что реально, а что нет.
Ледерман воспринял неудачу с юмором, даже после того, как его коллеги переименовали несуществующую частицу в УпсЛеон в его честь. Команда E288 вернулась к своему эксперименту весной 1977 года и начала собирать новые данные. Когда пик возник примерно на 9,5 ГэВ всего через семь дней, один из физиков, Джон Йо, воскликнул: «Что, черт возьми, происходит?!» Но, как того требовала традиция, он на всякий случай поставил в холодильник бутылку шампанского с надписью «9,5».
Но теперь они не спешили делать объявление. Они были полны решимости полностью удостовериться в том, что эта новая частица, образующаяся один раз на каждые 100 миллиардов протонов, сталкивающихся с мишенью, не случайна. Они приготовились собрать больше данных. В 11 часов вечера 20 мая произошел сбой в проводке устройства для измерения тока на магните. Кабель нагрелся, расплавился, а затем поджег соседний кабельный лоток. Вскоре зал наполнился едким дымом. Команда запаниковала.
Прибывшая пожарная бригада быстро все потушила, но команда встревожилась еще сильнее: вода, которой тушили возгорание, в сочетании с газообразным хлором, выделяемым в воздух огнем, образовала кислоту, которая начала разъедать электронные компоненты оборудования. Если они не смогут остановить коррозию, они никогда не соберут достаточно доказательств, чтобы объявить о новой частице. Отчаявшись спасти эксперимент, Ледерман вызвал голландского эксперта, который прибыл через 72 часа с ведрами секретного чистящего раствора. Все члены команды E288, сотрудники протонного отдела, мужья и жены, друзья и секретари присоединились к физикам на производственной линии, помогая им очистить 900 печатных плат под пристальным наблюдением эксперта.
Когда эксперимент был спасен, пять дней спустя они снова начали сбор данных. Пик на 9,5 ГэВ продолжал появляться. Масса новой частицы примерно в 10 раз превышала массу протона. Дважды – и трижды – команда перепроверяла свои результаты, но на этот раз они были абсолютно точны.
15 июня 1977 года они созвали семинар в аудитории Фермилаба и объявили, что у них правда получилось: команда E288 обнаружила совершенно новую частицу с энергией 9,5 ГэВ – самую тяжелую частицу, когда-либо обнаруженную, и первую, обнаруженную в Фермилабе. Ее вновь назвали ипсилон, но на этот раз название прижилось. В честь знаменательного открытия была выпита 9,5-литровая бутылка шампанского, и Фермилаб прочно вошел в историю как лаборатория экспериментальных открытий.
Согласование новых экспериментальных данных с развитием теории не заняло много времени. Оказалось, что ипсилон представляет собой комбинацию b-кварка и анти-b-кварка, название которых расшифровывается как боттом-кварк, или прелестный кварк, в зависимости от того, кого вы спросите. Новый тяжелый b-кварк был предсказан еще в 1973 году японскими теоретиками Макото Кобаяси и Тосихидэ Маскавой, а названия «топ-кварк» и «боттом-кварк» были придуманы в 1975 году израильским физиком Хаимом Харари. Несмотря на возрастающую сложность физики элементарных частиц, ипсилон еще раз подтвердил, что в основе природы лежит простота и симметрия. Всего было шесть лептонов (электрон, мюон, тау и их нейтрино) и шесть кварков (верхний, нижний, странный, очарованный, боттом (прелестный) и топ (истинный)).
Оглядываясь назад, можно сказать, что ипсилон был, как сказал Ледерман, «одним из самых ожидаемых сюрпризов в физике элементарных частиц»[257]. Теперь, когда стало известно, что существует боттом-кварк, стоило предположить, что есть и его тяжелый партнер, топ-кварк. Хотя физики пока не понимали, насколько он должен быть тяжелым, поскольку теория этого не говорила, следующие эксперименты в Фермилабе были предопределены. Начались поиски шестого – и последнего – кварка.
Фермилаб соответствовал видению Уилсона как национальное и международное учреждение, но Уилсон на этом не остановился. Он всегда смотрел далеко за пределы этой первой стадии. К открытию ипсилона у Фермилаба был уже не самый большой ускоритель в мире: пальма первенства перешла ЦЕРНу, построившему кольцо длиной 7 км под названием Протонный суперсинхротрон с энергией 450 Гэ В. Уилсон и Эдвардс гордо их обогнали, достигнув 500 ГэВ с немного меньшим по размеру «Главным кольцом», но теперь Уилсон раскрыл план, который он так долго вынашивал.
С самого начала Уилсон не хотел останавливаться на «Главном кольце», и у него были две идеи. Во-первых, он понял, что, если к комплексу добавить второй ускоритель, состоящий из мощных магнитов, они смогут удвоить энергию пучка. Они могли бы повторно использовать тот же туннель для создания пучков с энергией 1000 ГэВ или 1 ТэВ, достигая тем самым «тера-масштаба» и потенциально получая совершенно новые возможности. Во-вторых, он хотел построить машину, которая могла бы сталкивать частицы непосредственно друг с другом, а не с фиксированной целью: построить коллайдер, а не просто ускоритель.
Новое кольцо, получившее название «Удвоитель энергии», но позже переименованное в Тэватрон, должно было находиться непосредственно под «Главным кольцом», где Уилсон выделил для него достаточно места. План состоял в том, чтобы сначала ускорить протоны в существующем «Главном кольце», а затем передать пучок в кольцо Тэватрона, где он достигнет энергии в 1 Тэ В. Удержать на траектории настолько высокоэнергетические частицы возможно только с магнитной технологией совершенно нового типа, которая могла бы создавать магнитное поле в два раза большее, чем магнитное поле «Главного кольца». Обычные электромагниты, изготовленные из железа и меди, уже не подходили, поэтому Уилсон планировал использовать сверхпроводящие магниты, называемые так потому, что они сделаны из материалов, которые могут выдерживать огромный электрический ток, не выделяя тепла.
Сверхпроводящие материалы теряют все электрическое сопротивление ниже определенной температуры, обычно около –270 градусов по Цельсию – эффект, впервые обнаруженный еще в 1911 году. Пятьдесят лет спустя были обнаружены первые сверхпроводящие материалы[258], которые можно было сформировать в провода. Теоретически эти провода могли бы создавать сильное магнитное поле. Проблема заключалась в том, что никто никогда не делал магнит ускорителя таким образом. Как всегда, Уилсон был впереди и в 1972 году запустил программу по созданию сверхпроводящих магнитов – поразительный шаг за пять лет до того, как Ледерман и команда E288 обнаружили ипсилон.
Второй аспект смелого видения Уилсона заключался в столкновении двух лучей вместе, и это было не менее сложно. Столкновение частиц лоб в лоб – почти невыполнимая задача, поскольку каждая отдельная частица настолько мала, что ее шансы столкнуться с