Рейтинговые книги
Читем онлайн Основы объектно-ориентированного программирования - Бертран Мейер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 75 76 77 78 79 80 81 82 83 ... 188

В таких случаях, правила, определенные выше, гарантируют желаемое дуальное поведение, что было бы недостижимо, если бы требовался различный синтаксис для двух видов семантики. С другой стороны, если во всех случаях требуется единая семантика, то и это достижимо: такое поведение может быть только семантикой значений (так как семантика ссылок не имеет смысла для развернутых типов); поэтому в соответствующих подпрограммах следует использовать clone (или copy) и equal, а не (:= и =).

Форма операций клонирования и эквивалентности

Форма вызова подпрограмм clone и equal является стилевой особенностью, которая может вызвать удивление. На первый взгляд нотация:

clone (x)

equal (x, y)

выглядит не слишком объектно-ориентированной. Догматичное следование принципу "ОО-стиля вычислений" из предыдущей лекции предполагает другую форму (См. "Объектно-ориентированный стиль вычислений", лекция 7):

x.twin -- twin это двойник - клон.

x.is_equal (y)

В первой версии нотации так и делалось, однако возникла проблема пустых ссылок. Вызов компонента вида x.f (...) не может быть корректно выполнен в случае пустого x во время выполнения. В этом случае вызов инициирует исключение, которое повлечет аварийное завершение всей системы, если в соответствующем классе не предусмотрена обработка исключений. Поскольку во многих случаях x может быть действительно пустой ссылкой, то это означало бы, что каждый вызов twin должен предусматривать охрану и выглядеть так:

if x = Void then

z := Void

else

z := x.twin

end

Соответственно, реализация вызова is_equal должна выглядеть (and then является вариантом and. См. "Нестрогие булевы операции", лекция 13):

if

((x = Void) and (y = Void)) or

((x /= Void) and then x.is_equal (y))

then

...

Излишне говорить, что не следует придерживаться этих соглашений. Нам быстро надоест писать подобные витиеватые фрагменты, а когда мы забудем это сделать, то результатом будет ошибка времени выполнения. Окончательный вариант соглашений, сформулированный в данной лекции, замечателен еще и тем, что дает ожидаемые результаты для x, равного void, - clone (x) вернет void, а equal (x, y) вернет true, если и y - void.

Вызов процедуры copy в форме x.copy (y) не создает подобных проблем, поскольку требует непустых x и y. Это следствие семантики процедуры copy, копирующей поля одного объекта в поля другого, и имеющей смысл, только если существуют оба объекта. Как показано далее, такое условие для y фиксируется формальным предусловием copy, заданным в явном виде в документации.

Отметим, что введенная выше функция is_equal существует в библиотеке системы. Причина в том, что часто удобнее определить специфические варианты эквивалентности элементов конкретного класса, перекрыв семантику по умолчанию. Для достижения этого эффекта достаточно переопределить функцию is_equal в соответствующем классе. Функция equal определяется в терминах is_equal (выражением, показанным выше при иллюстрации использования is_equal), и поэтому следует за всеми переопределениями is_equal.

Когда есть функция clone, то нет необходимости в twin. Это связано с тем, что функция clone определена как создание объекта с последующим вызовом copy. Поэтому для адаптации clone к специфике класса достаточно переопределить процедуру copy данного класса. (См. также лекция 16)

Статус универсальных операций

Последние комментарии частично прояснили вопрос о статусе универсальных операций clone, copy, equal, is_equal, deep_clone, deep_equal.

Эти операции не являются языковыми конструкциями, невзирая на их фундаментальную значимость для практики. Они поставляются классом ANY основной библиотеки Kernel. Этот класс имеет то специальное свойство, что каждый класс, созданный разработчиком, автоматически становится наследником (прямым или косвенным) класса ANY. Вот почему становится возможным переопределить вышеупомянутые компоненты для поддержки специального вида эквивалентности или копирования. (См. "Глобальная структура наследования", лекция 16)

Сейчас нет необходимости в деталях, поскольку мы еще вернемся к этой проблеме при изучении наследования. Но уже теперь полезно знать, что благодаря механизму наследования, мы можем полагаться на библиотечные классы, поддерживающие свойства, доступные всем классам, - и каждый класс может изменить их, приспосабливая к своим, специфическим целям.

Ключевые концепции

[x]. ОО-вычисления характеризуются высоко динамичной структурой времени выполнения, в которой объекты создаются только по запросу.

[x]. Некоторые объекты, используемые ПО, являются моделями внешних объектов (обычно косвенными). Другие объекты служат только для целей проектирования и реализации.

[x]. Объект состоит из ряда значений, называемых полями. Каждое поле соответствует атрибуту генератора объекта (класса, прямым экземпляром которого является объект).

[x]. Значение, в частности поле объекта, является объектом или ссылкой.

[x]. Ссылка может быть пустой (void) или присоединенной к объекту. Проверка условия x = Void позволяет определить текущее состояние ссылки. Корректное выполнение вызова x.f (...) возможно, если x не пустая ссылка.

[x]. Если объявление класса начинается с предложения class C ..., то сущность типа Cбудет обозначать ссылку, которая может быть присоединена к экземпляру C. Если начало объявления выглядит как expanded class D ..., то сущность типа D будет обозначать объект (экземпляр D) и никогда не может быть пустой ссылкой.

[x]. Базовые типы (BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE) определены как развернутые классы.

[x]. Развернутые объявления дают возможность определять составные объекты: объекты с подобъектами.

[x]. Объектные структуры могут содержать циклические цепочки ссылок.

[x]. Инструкция создания create x создает объект, инициализирует его поля значениями по умолчанию и присоединяет к нему x. Если в классе определены порождающие процедуры создания, то выполнение инструкции вида create x.creatproc (...) приведет, кроме того, к заданной специфической инициализации полей.

[x]. Для сущностей ссылочного типа присваивание (:=) и проверка эквивалентности (=) являются ссылочными операциями. Для сущностей развернутых типов используется семантика значений. Соответствующая семантика распространяется и на смешанные операнды.

[x]. В результате ссылочных операций появляются динамические псевдонимы. Они затрудняют получение выводов о работе системы при анализе ее текста. На практике большинство нетривиальных действий со ссылками можно инкапсулировать в библиотечные классы.

Библиографические замечания

Понятие идентичности объекта играет важную роль для баз данных, особенно объектно-ориентированных. Смотри лекцию 13 курса "Основы объектно-ориентированного проектирования", посвященную таким базам данных, и библиографию к ней.

Графические обозначения метода BON (Business Object Notation) разработаны Jean-Marc Nerson и Kim Walden [Walden 1995]. James McKim и Richard Bielak детально рассмотрели преимущества альтернативных порождающих процедур [Bielak 1994].

Риски, связанные с нетипизированными указателями и ссылочными операциями, уже долгое время волнуют специалистов в области методологии программирования, порождая намеки на то, что в области данных это аналог ненавистной операции goto в области управления выполнением кода. В удивительно малоизвестной статье Nori Suzuki [Suzuki 1982] обсуждается возможность избежать в рамках строгого подхода с использованием высокоуровневых операций проблем с динамическими псевдонимами (как избавляются от применения goto, используя приемы "структурного программирования"). Хотя по признанию автора выводы неутешительны, данная статья весьма полезна.

1 ... 75 76 77 78 79 80 81 82 83 ... 188
На этой странице вы можете бесплатно читать книгу Основы объектно-ориентированного программирования - Бертран Мейер бесплатно.
Похожие на Основы объектно-ориентированного программирования - Бертран Мейер книги

Оставить комментарий