Рейтинговые книги
Читем онлайн Контроль качества изготовления и технология ремонта композитных конструкций - Виктор Маркин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10

– основанные на излучении и приеме акустических волн;

– основанные на регистрации акустических волн, возникающих в материалах и изделиях.

В первой группе различают методы контроля с использованием бегущих и стоячих волн или резонансных колебаний контролируемого объекта. На использовании бегущих волн основаны следующие методы.

Теневой метод. Иногда его называют методом сквозного прозвучивания. В этом случае излучатель и приемник разделены, а дефект на пути ультразвуковых волн ослабляет принимаемый сигнал или задерживает его приход, поскольку при огибании дефекта удлиняется путь упругой волны (рисунок 3.1).

Зеркально-теневой метод. Это разновидность теневого метода.

В данном случае оба датчика устанавливаются с одной стороны контролируемого изделия. Интенсивность упругих колебаний регистрируется после их отражения от противоположной поверхности.

Рисунок 3.1 – Возникновение акустической тени при сквозном прозвучивании:

а – объект исследования не имеет дефекта; б – объект имеет малый дефект, искажающий уровень регистрируемого сигнала; в – образование акустической тени при крупном дефекте. 1 – излучатель ультразвуковых волн; 2 – приемник ультразвуковых волн; 3 – исследуемый образец; 4 – дефекты в образце

Эхоимпульсный метод. При этом методе упругие колебания вводят с помощью совмещенной искательной головки, которая посылает импульс и регистрирует его после прохождения по контролируемой детали (как и на Рисунок 3.2). На экране осциллографа при прохождении лучей через деталь, не имеющую дефекта, появятся только два импульса: начальный (отражение от границы «головка – деталь») и конечный, или донный (деталь – воздушная среда). Если на пути излучения появится дефект, возникает еще один импульс, свидетельствующий о наличии препятствия. При полном перекрытии дефектом пути излучения на экране появятся начальный импульс и импульс, свидетельствующий о наличии какой-либо несплошности.

При этом методе используются поверхностные нормальные и сдвиговые волны, которые посылаются в исследуемый материал импульсами, следующими один за другим через определенные интервалы времени.

Импендансный метод. Основан на зависимости полного механического сопротивления (импенданса) упругим колебаниям изделия от качества соединения отдельных его элементов между собой. Этим методом контролируют изделия, имеющие несколько слоев (рисунок 3.2).

Стержень датчика совершает продольные колебания и контактирует с участком поверхности трехслойного материала. Если участок склеенного материала без дефекта будет сопротивляться колебаниям, создавая реакцию Fp, то над участком с дефектом непроклея, реакция уменьшится до Fрд, так как жесткость поверхностного слоя на участке дефекта будет меньше, чем в предыдущем случае. Усилие реакции фиксируется индикатором.

Рисунок 3.2 – Импендансный метод акустической дефектоскопии:

1 – стержень датчика; 2 – поверхностный слой трехслойной конструкции; 3 – клеевая прослойка; 4 – основной слой материала конструкции; 5 – дефект непроклея

Резонансный метод дефектоскопии и толщинометрии (рисунок 3.3).

При контроле этим методом определяют частоты, на которых возбуждаются резонансы колебаний в исследуемом участке изделия (например, по толщине стенки трубы или листа). По резонансным частотам определяют толщину изделия. На наличие дефекта указывает уменьшение толщины, ослабление или исчезновение резонансов.

Рисунок 3.3 – Резонансный метод дефектоскопии и толщинометрии

Последнее происходит в случае, когда дефект расположен не параллельно поверхности изделия или наблюдается повышенное затухание ультразвука.

Метод свободных колебаний или спектральный (рисунок 3.4). Основан на анализе спектра частот собственных колебаний изделия, вибрирующего после удара по нему. Раньше эту операцию контролеры выполняли только на слух (например, проверка стеклянной посуды по звону), но в настоящее время разработана аппаратура, позволяющая выделять и количественно анализировать наиболее характерные части спектра.

Рисунок 3.4 – Реализация спектрального метода неразрушающего контроля

Ко второй группе относится следующие методы регистрации акустических волн, возникающих в материалах и изделиях.

Метод акустической эмиссии. Регистрирует упругие волны, возникающие в момент образования или развития трещин. В этом случае излучателем ультразвука является образующийся дефект. Следует отметить, что даже небольшие изменения структуры материала служат источником волн эмиссии. Признак достижения опасного состояния конструкции – увеличение частоты следования или амплитуды сигналов в определенном диапазоне частот. Этим методом проверяют сварные конструкции (сосуды давления, фермы мостов) в процессе сварки, при прочностных испытаниях, а также во время эксплуатации.

Шумно-вибрационный метод. Основан на наблюдении спектра частот работающего механизма в целом или отдельных его компонентов. Преобразователь, подобно медицинскому стетоскопу, прижимают к отдельным точкам механизма, или он воспринимает сигналы по воздуху.

Эхометод ультразвуковой дефектоскопии. Наиболее распространен, с его помощью контролируют поковки, штамповки, прокат, термообработанное литье, сварные швы, пластмассы, измеряют толщину изделий и оценивают структуру материалов.

Теневой метод. Применяется в основном для контроля проката малой и средней толщины, некоторых резиновых изделий (покрышек колес), для исследования упругих свойств стеклопластиков, бетона, графита и т. д. Как правило, условием его применения является двусторонний доступ к изделию. В случае, когда это условие не выполняется, может быть использован зеркально-теневой метод (например, для контроля железнодорожных рельсов) или резонансный. Последний применяют в основном для измерения толщины тонкостенных труб и сосудов.

Импедансный метод. Контролирует клеевые и паяные конструкции из металла и пластмасс. Используется только при сухом точечном контакте преобразователя с изделием.

Метод свободных колебаний (с приборной регистрацией). Применяется для тех же целей, что и импедансный.

Акустические методы классифицируют также по способу контакта преобразователя с изделием. Ультразвуковые волны хорошо отражаются от тончайших воздушных зазоров, поэтому для передачи ультразвука от преобразователя к изделию промежуток между ними заполняют слоем жидкости [11].

Существует несколько способов передачи ультразвука:

контактный – преобразователь прижимают к поверхности изделия, предварительно смазанной жидкостью (например, маслом) до соприкосновения. В некоторых случаях слой жидкости заменяют или дополняют эластичным материалом;

щелевой (или менисковый) – между преобразователем и изделием создается зазор толщиной порядка длины волны ультразвука. В этом зазоре жидкость удерживается силами поверхностного натяжения;

иммерсионный – между преобразователем и изделием создается толстый слой жидкости путем помещения изделия в резервуар с жидкостью или образования локальной жидкостной ванны;

бесконтактные – это способы возбуждения и приема упругих колебаний через слой воздуха или с помощью электромагнитного поля, возбуждаемого датчиком. В этом случае специальная контактная среда не требуется.

Указанными методами можно выявлять поверхностные и внутренние дефекты. Все другие методы контроля, кроме радиационных, выявляют только поверхностные или подповерхностные дефекты.

Акустическими методами, практически безопасными для обслуживающего персонала, хорошо обнаруживаются тонкие трещины. Ультразвуковой контроль легко автоматизировать.

Применение ультразвукового контроля ограничивают следующие факторы: неоднородность внутренней структуры материала: наличие крупнозернистой структуры, так как гетерогенность материала вызывает сильное рассеяние ультразвуковых волн, что ослабляет полезный сигнал и приводит к появлению шумов; в частности плохо контролируются литье (особенно из коррозионностойких сталей), чугун с крупными графитовыми включениями, бетонные изделия; сложность формы и малые размеры изделий затрудняют введение ультразвуковых лучей, а при наличии выступов и выемов на поверхности вблизи области возможного расположения дефектов могут возникать ложные сигналы; грубая поверхность изделия (ниже 6-го класса шероховатости) приводит к ослаблению чувствительности ультразвукового контроля и нестабильности акустического контакта преобразователя с изделием. Требования к шероховатости поверхности особенно высоки при контактном способе контроля и снижаются при иммерсионном способе.

1 2 3 4 5 6 7 8 9 10
На этой странице вы можете бесплатно читать книгу Контроль качества изготовления и технология ремонта композитных конструкций - Виктор Маркин бесплатно.
Похожие на Контроль качества изготовления и технология ремонта композитных конструкций - Виктор Маркин книги

Оставить комментарий