Пространство вокруг таких тел – планет, звезд и т. д. – искривлено, и степень искривления зависит от массы тела. А поскольку в теории относительности время не может быть отделено от пространства, присутствие вещества оказывает воздействие и на время, вследствие чего в разных частях Вселенной время течет с разной скоростью. В то время как классическая физика рассматривает движение твердых тел в пустом пространстве, в ОТО сама структура пространства – времени зависит от распределения вещества во Вселенной и понятие «пустого пространства» вообще теряет смысл (2). Более того, если раньше полагали, что с исчезновением материи остается пустое пространство, то теория относительности утверждает, что с исчезновением материи исчезнет и пространство.
Что касается понятия твердого тела, то оно было поставлено под сомнение атомной физикой – наукой о бесконечно малом. Одновременное появление теории относительности и теории атома поставило под сомнение представление ньютоновской механики об абсолютном характере времени и пространства, о твердых элементарных частицах, о строгой причинной обусловленности всех физических явлений и о возможности объективного описания природы. Старые понятия не находили применения в новых областях науки.
Первые шаги в мир бесконечно малого
Началом атомной физики явились два открытия конца XIX века, необъяснимые с позиций классической физики. Первое свидетельство в пользу того, что атомы обладают какой-то структурой, появилось в 1895 году с открытием немецким физиком В. Рентгеном рентгеновских лучей – нового вида излучения, быстро нашедшего свое применение в медицине. При помощи рентгеновских лучей Макс фон Лауэ исследовал атомную структуру кристалла. Однако рентгеновские лучи были не единственным видом излучения, испускаемого атомами. Вскоре после их открытия французский физик А. Беккерель в 1896 году обнаружил другой вид излучений, испускаемых так называемыми «радиоактивными элементами». Это излучение стали называть радиоактивным. «Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием некоторых частиц» (4).
Явление радиоактивности подтверждало, что атомы таких элементов не только испускают различные излучения, но и превращаются при этом в атомы совершенно других элементов, что говорит о сложности строения атома.
Планетарная модель атома. Английский физик Эрнест Резерфорд обнаружил, что так называемые альфа-частицы, исходящие от радиоактивных веществ, можно использовать в качестве высокоскоростных снарядов субатомного размера для исследования внутреннего строения атома. Он подвергал атом обстрелу альфа-частицами и по их траекториям после столкновения определял, как устроен атом.
В результате бомбардировки атомов потоками альфа-частиц Резерфорд получил сенсационные и совершенно неожиданные результаты. Вместо описанных древними твердых и цельных частиц перед ученым предстали невероятно мелкие частицы-электроны, движущиеся вокруг ядра на достаточно большом расстоянии. Электроны, казалось, были прикованы к ядрам некими силами.
В 1911 году Резерфорд предложил планетарную модель атома, состоящего из тяжелого ядра и окружающих его электронов. Миниатюрный атом, диаметр которого примерно одна миллионная сантиметра, состоит из положительно заряженного ядра, которое на то время считалось неделимым, и движущихся вокруг него по орбите отрицательно заряженных электронов. Стоит заметить, что электрический заряд атома равен вовсе не нулю, а нулевой сумме противоположных электрических зарядов. Нуль есть тривиальность (небытие), которая не содержит в себе никаких компонентов, в то время как нулевая сумма есть объективная реальность (бытие), состоящая из компонентов, равных по величине, но противоположных по знаку.
Если мы возьмем в руки металлический шарик диаметром 1 мм, то диаметр атома окажется в 100 млн раз меньше его, а радиус ядра атома в 10 тысяч раз меньше радиуса самого атома. И сам атом практически состоит из пустоты. Атомное ядро занимает одну триллионную часть всего атома. Позднее, когда удалось разделить ядро, выяснилось, что оно состоит из еще более мелких элементов: протонов и нейтронов.
Хорошее представление об атоме дает такой пример. Если в центре Исаакиевского собора в Санкт-Петербурге, самого большого собора России, поместить крупинку сахара, олицетворяющую ядро, вращающееся вокруг собственной оси, а в самом дальнем углу собора расположить пылинку – электрон, – вращающуюся с неимоверной скоростью вокруг крупинки сахара, то это будет приближенная модель атома водорода.
Вскоре после появления этой «планетарной» модели атома было обнаружено, что от количества электронов зависят химические свойства элемента, что явилось прекрасным подтверждением правильности Периодической системы элементов Д. И. Менделеева (1869). Все элементы отличаются друг от друга только количеством электронов, вращающихся вокруг ядра. Сегодня мы знаем, что периодическую систему элементов можно составить, добавляя последовательно протоны к ядру самого легкого атома – атома водорода, а также соответствующее число электронов к «оболочкам» атома (или к сферическим орбитам).
Например, если представить, что в центре Исаакиевского собора вращается сахарная крошка, состоящая из 56 крупинок сахара, а вокруг нее носятся с огромной скоростью 26 пылинок, то получится модель атома железа.
Перед учеными встал ряд вопросов. Если атомы, образующие твердую материю, например железо, состоят практически из пустого пространства, то почему мы не можем проходить сквозь стены? Что придает веществу твердость? Вторая загадка связана с невероятной стабильностью атома. На основе классических представлений существование стабильных атомов в принципе невозможно. Согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен непрерывно уменьшаться, и за время примерно 10–8 с электрон должен упасть на ядро. В действительности же атомы не только существуют, но и весьма устойчивы (4).
Кроме того, в воздухе, например, атомы кислорода миллионы раз в секунду сталкиваются друг с другом и тем не менее после каждого столкновения приобретают прежнюю форму. Никакая система планет, подчиняющаяся законам классической механики, не выдержала бы таких столкновений. Однако сочетание электронов атома любого элемента (кислорода, железа и т. д.) всегда одинаково, сколько бы они ни сталкивались с другими атомами. Два атома железа и два железных бруска абсолютно идентичны, где бы они ни находились и как бы с ними ни обращались до этого.
Результаты всех экспериментов были парадоксальны и непонятны, и все попытки выяснить, в чем тут дело, оборачивались неудачей.
Становление квантовой механики
Механика Ньютона и классическая электродинамика Максвелла оказались не способны объяснить процессы, происходящие со скоростями, близкими к скорости света, и ответить на вопросы, возникшие в результате исследования атома. Однако трудности в поисках ответов не останавливают, а, наоборот, стимулируют развитие науки, ибо, как сказал П. Капица: «Наука – это то, чего мы не знаем, а чего знаем – это технология».
Не сразу физики пришли к выводу о том, что парадоксы[1] обусловлены их стремлением описывать явления атомной действительности в терминах классической физики. Однако, убедившись в этом, они стали по-другому воспринимать экспериментальные данные и искать новые теоретические подходы.
В начале ХХ века зародилась новая теория – квантовая механика, которая стремительно заняла лидирующее положение в науке. По словам В. Гейзенберга, они «каким-то образом прониклись духом квантовой теории» и смогли четко и последовательно сформулировать ее в математическом виде (1).
Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомного ядра, изучить свойства элементарных частиц. А поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания всех макроскопических явлений, с которыми мы, люди, сталкиваемся повседневно.
Эти законы не так-то легко было открыть. Они были сформулированы лишь в 20-е годы прошлого века благодаря усилиям физиков разных стран: датчанина Нильса Бора, француза Луи де Бройля, австрийцев Эрвина Шредингера и Вольфганга Паули, немцев Макса Планка и Вернера Гейзенберга, англичанина Поля Дирака и др. И конечно, огромная заслуга в развитии новой науки принадлежит Альберту Эйнштейну. Эти люди первыми соприкоснулись с неведомой необычной реальностью мира атома.