Вернуться
464
Chen I. A., Walde P. From Self-Assembled Vesicles to Protocells. Cold Spring Harbor Perspectives in Biology, vol. 2, iss. 7, a002170. 2010.
Вернуться
465
Chen I. A. et al. The Emergence of Competition Between Model Protocells. Science, vol. 305, iss. 5689, pp. 1474–1476. 2004.
Вернуться
466
Mansy S. S., Szostak J. W. Thermostability of model protocell membranes. PNAS, vol. 105, iss. 36, pp. 13351–13355. 2008.
Вернуться
467
Hanczyc M. M., Szostak J. W. Replicating vesicles as models of primitive cell growth and division. Current Opinion in Chemical Biology, vol. 8, iss. 6, pp. 660–664. 2004.
Вернуться
468
Zhu T. F., Szostak J. W. Coupled Growth and Division of Model Protocell Membranes. Journal of the American Chemical Society, vol. 131, iss. 15, pp. 5705–5713. 2009.
Вернуться
469
Zhu T. F. et al. Photochemically driven redox chemistry induces protocell membrane pearling and division. PNAS, vol. 109, iss. 25, pp. 9828–9832. 2012.
Вернуться
470
Budin I. et al. Concentration-Driven Growth of Model Protocell Membranes. Journal of the American Chemical Society, vol. 134, iss. 51, pp. 20812–20819. 2012.
Вернуться
471
Szostak J. W. The eightfold path to non-enzymatic RNA replication. Journal of Systems Chemistry, vol. 3, iss. 2. 2012.
Вернуться
472
Adamala K., Szostak J. W. Nonenzymatic Template-Directed RNA Synthesis Inside Model Protocells. Science, vol. 342, iss. 6162, pp. 1098–1100. 2013.
Вернуться
473
Jin L. et al. Catalysis of Template-Directed Nonenzymatic RNA Copying by Iron (II). Journal of the American Chemical Society, vol. 140, iss. 44, pp. 15016–15021. 2018.
Вернуться
474
Joyce G. F., Szostak J. W. Protocells and RNA Self-Replication. Cold Spring Harbor Perspectives in Biology, vol. 10, iss. 9, a034801. 2018.
Вернуться
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})
475
Interview with John Sutherland.
Вернуться
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})
476
Budin I. et al. Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions. Biophysical Journal, vol. 107, iss. 7, pp. 1582–1590. 2014.
Jin L. et al. Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small, vol. 14, iss. 15, art. 1704077. 2018.
Вернуться
477
Blain J. C., Szostak J. W. Progress Toward Synthetic Cells. Annual Review of Biochemistry, vol. 83, pp. 615–640. 2014.
Adamala K. P. et al. Collaboration between primitive cell membranes and soluble catalysts. Nature Communications, vol. 7, art. 11041. 2016.
Вернуться
478
“Белок” из двух аминокислотных остатков лучше называть “пептидом”, а еще лучше – “дипептидом”. – Прим. перев.
Вернуться
479
Adamala K., Szostak J. W. Competition between model protocells driven by an encapsulated catalyst. Nature Chemistry, vol. 5, iss. 6, pp. 495–501. 2013.
Вернуться
480
Kamat N. P. et al. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides. Angewandte Chemie, vol. 54, iss. 40, pp. 11735–11739. 2015.
Вернуться
481
Szostak J. W. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angewandte Chemie, vol. 56, iss. 37, pp. 11037–11043. 2017.
Вернуться
482
Szathmáry E. Founder of systems chemistry and foundational theoretical biologist: Tibor Gánti (1933–2009). Journal of Theoretical Biology, vol. 381, pp. 2–5. 2015.
Вернуться
483
Gánti T. Az élet princípiuma (The Principles of Life). 1971. Gondolat, Budapest.
Вернуться
484
Szathmáry E. The origin of replicators and reproducers. Philosophical Transactions B, vol. 361, iss. 1474, pp. 1761–1776. 2006.
Вернуться