Построение этой величественной картины динамической Вселенной и проявления ее пульсаций в жизни Земли – одно из самых впечатляющих достижений человеческой мысли, от философских умозаключений Древней Индии до самых последних выводов современной физики и биологии. С древнейших времен представления о периодичности космических влияний на земные события находили свое отражение не только в философских построениях индуизма, дзен-буддизма, некоторых греческих научных школ, но и в системах наблюдений астрологической медицины. В XX веке развитие этих представлений в значительной мере связано с достижениями научно-философской школы русских космистов, в особенности с работами А. Л. Чижевского и В. И. Вернандского.
Из множества циклов Космоса наиболее значима для биосферы периодичность солнечной активности, т. е. совокупности физических изменений Солнца. Еще в XVII в. Галилей и другие ученые-астрономы обнаружили на поверхности Солнца темные пятна, которые появляются и исчезают, меняют величину по мере вращения Солнца вокруг своей оси. В середине XIX века швейцарский астроном Р. Вольф показал, что в солнечной активности, выражающейся в образовании пятен имеется цикличность, и продолжительность цикла меняется от 7 до 16 лет, составляя в среднем 11,1 года. Причины этих колебаний могут быть связаны как с внутренними механизмами солнечной деятельности, так и с гравитационными влияниями планет, периодически изменяющимися при их взаимных перемещениях.
Как же передаются эти влияния обитателям Земли? Оказалось, что многие биологические процессы и состояния, в том числе и самочувствие людей, меняются в ритме заданном «солнечным ветром», потоки частиц которого меняют свое направление (как и силовые линии геогелиомагнитных полей) вследствие вращения Солнца вокруг своей оси: вся совокупность потоков материи и энергии от Солнца также вращается с периодом 27 дней. Поворачиваясь подобно спицам гигантского колеса, они «бьются» о земную магнитосферу с разными интервалами – от нескольких часов до дней, недель и месяцев, – оказывая влияние на атмосферу, гидросферу и все живое на Земле.
Как сказываются на живых существах все эти периодические явления? Хорошо известны сезонные циклы размножения животных и растений, суточные ритмы активности всего живого, приливно-отливные ритмы морских организмов. На периоды максимума солнечной активности приходятся наиболее урожайные годы. На основании прогнозов солнечной активности, которые даются астрономами на десятки лет вперед, можно рассчитать годы повышения патогенности микроорганизмов и возникновения эпидемий, годы нашествий на поля грызунов и саранчи. Социологи и историки выяснили, что последние несколько веков начало всех военных и революционных событий приходилось на годы максимальной солнечной активности.
Каков же механизм чувства времени у живых существ? Какие процессы внутри клеток и организмов помогают им ориентироваться во времени? Прежде всего, необходимо понять, является ли чувство времени внутренне присущим живым организмам, фундаментальным свойством живого или же ритмичность биологических процессов – просто реакция на периодические колебания условий внешней среды. Самый естественный путь для решения этого вопроса – изучение организмов, содержащихся в ходе эксперимента в строго постоянных условиях. Такими опытами было доказано, что у каждого вида организмов имеется ряд ритмов, не зависящих от условий среды. Эти ритмы были названы эндогенными. Многие из них имеют периодичность, близкую к суткам: это, например, ритмы деления клеток, изменения активности ферментов, окислительно-восстановительных процессов. Более быстрые (короткопериодичные) ритмы – например, дыхания, сердечной деятельности у человека – также являются эндогенными. Однако некоторые ритмы, такие, как чередование сна и бодрствования, активности и пассивности пищеварительных ферментов и многие другие, подчиняющиеся в природных условиях суточной периодичности, в постоянных условиях эксперимента несколько изменяют (например, до 25 часов) свой период. По этой причине большую группу ритмов, в природе строго синхронизируемых сменой дня и ночи, стали называть циркадианными или циркадными (околосуточными).
Другая большая группа ритмов в организмах имеет околочасовую периодичность, а многие ферментативные процессы в клетках осциллируют с короткими периодами (порядка секунд или минут).
Видимо, благодаря всем этим разнообразным механизмам, носящим общее имя «биологические часы», и возможно очень точное ориентирование всех живых существ во времени. Примером такого ориентирования может послужить возможность формирования рефлекса на время у моллюска. Ход опыта таков: моллюск получает каждые 5 минут удары слабым током. После удара он ненадолго скрывается в раковине, а затем продолжает свое движение. После прекращения ударов моллюск продолжает точно каждые 5 минут прятаться в раковине. Это говорит о наличии у него системы отсчета времени.
Другой пример связан с сезонными циклами размножения. Океанский червь палоло раз в году образует для размножения громадные скопления в определенном квадрате океана, в определенной фазе луны, для чего этим пловцам приходится преодолевать многие километры пути. Это также свидетельствует о существовании в их организмах системы отсчета времени (и ориентирования в пространстве!), которая позволяет им заранее «предвидеть» сезон размножения и вовремя пуститься в путь.
Все подобные примеры ставят нас перед волнующей загадкой природы: каким образом живые организмы предвидят наступление важных для их существования периодических изменений в среде? Иными словами, если биологические часы есть неотъемлемое свойство живого, то как они устроены?
В последние два десятилетия наука вплотную приступила к решению загадки «биологических часов»; возникли даже новые области – хронобиология и хрономедицина.
Вкратце, современные представления об устройстве «биологических часов» сводятся к следующему. Каждая клетка живого организма обладает набором биохимических реакций, имеющих автоколебательные свойства. К ним относятся концентрационные колебания в ферментных системах – результат саморегуляции при наличии обратной связи. Предполагается, что это и есть принцип организации «секундомеров» в «биологических часах». Однако чтобы эти часы могли служить для измерения более длительных процессов, например, сообразно, с длительностью суток, необходим замедляющий механизм, действующий аналогично зубчатой передаче механических часов. Скорее всего, эту роль играют процессы диффузии продуктов быстрых биохимических реакций внутри клетки, «обслуживающие» цикл клеточного деления. Вероятно, этот околочасовой ритм закладывается в самом начале развития каждого организма, когда оплодотворенная материнская клетка очень быстро, строго ритмично многократно делится, образуя многоклеточный зародыш. В этот уникальный период жизни клеточные деления происходят со скоростью, определяемой главным процессом – удвоением (репликацией) молекулы ДНК. Полагают, что это и есть так называемый «хронон – модель биологического циркадного механизма.
Автор концепции «хронона» Ч. Эре сравнивает двухспиральную молекулу ДНК со старинным хронометром, состоящим из двух перевитых кусков каната, пропитанных воском и свечным салом. Они горят с удивительно постоянной скоростью, что и навело Ч. Эре на его идею. Каждая клетка, как и целый организм, – самоподдерживающаяся система. Она должна постоянно подзаряжаться энергетически. Окислительно-восстановительные процессы, энергетически обеспечивающие деление клеток, – это основные таймеры множества околочасовых ритмических процессов, связанных в начале развития с клеточным делением. В более поздние периоды жизни организма клетки делятся уже не так быстро, но клеточные околочасовые ритмы продолжают существовать.
А что помогает организму ориентироваться во времени суток, в сезонах года? Какой часовой механизм определяет время созревания, старения и смерти каждого организма? Многие животные заранее «знают» время и направление длительных миграций к месту обзаведения потомством. Так, всем известная горбуша, после своего развития из икринок, оплодотворенных в реках, в течение 4–5 лет живет и взрослеет в Тихом океане, растет, накапливает жир, готовясь к половому созреванию. С приближением периода размножения горбуша начинает свой путь, иногда длиной в тысячи километров, к устью именно той реки, где она появилась на свет. За время пути рыба начинает проявлять признаки старения: у нее меняется форма тела и челюстей, западают глаза, истончается кожа, запасы жира расходуются на формирование половых продуктов. Для нереста горбуши добираются до верховьев рек, преодолевая пороги, иногда погибая в пути. После нереста все родительские особи умирают (причиной являются множественные инфаркты, связанные с колоссальным повышением уровня холестерина в крови). Жизнь рыб как будто заканчивается в соответствии с программой, записанной в генах…