Рейтинговые книги
Читем онлайн Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 90 91 92 93 94 95 96 97 98 ... 117

Летом 1974 г. на обсерватории Аресибо был обнаружен очень слабый пульсар PSR 1913, являющийся компонентой тесной двойной системы с периодом обращения 7h46m. Расстояние между компонентами немного больше радиуса Солнца. Вторая компонента должна быть либо белым карликом, либо еще более компактным объектом, заведомо не заполняющим свою полость Роша. Поэтому никакой аккреции в этой системе нет, что и делает пульсар наблюдаемым. Сама по себе аккреция газа на нейтронную звезду, находящуюся в двойной системе, может привести к чрезвычайно интересным и важным последствиям. Об этом мы будем много говорить в § 23. Следует, однако, заметить, что вопрос о причинах отсутствия двойственности у пульсаров до конца еще не ясен. Здесь у теоретиков еще много пищи для размышлений.

Рис. 21.3:

«Синтетические» профили пульсаров обнаруживают большое разнообразие. Хотя, как уже упоминалось выше, они показывают значительную изменчивость, для данного пульсара основные особенности таких профилей остаются неизменными и могут служить как бы его «паспортом». Например, есть такие пульсары, где профиль состоит из одного простого импульса, например, неоднократно уже упоминавшийся пульсар PSR 0833—45. Есть пульсары, у которых синтетический профиль состоит из двух, а то и трех «субимпульсов». Это хорошо видно из рис. 21.3, где приведены синтетические профили 18 пульсаров.

Интервал времени, в течение которого наблюдается излучение от пульсаров (так называемое «окно»), обычно составляет около 1/30 от периода. На рис. 21.4 приведена диаграмма, дающая зависимость ширины «окна» от периода пульсаров. Ширину «окна» удобно измерять в угловых единицах (360° соответствуют полному периоду пульсаров). На этом рисунке хорошо видно, что точки, соответствующие различным пульсарам, группируются около прямой, соответствующей ширине «окна» 9°.

Рис. 21.4: Рис. 21.5:

Хотя ширина «окна» для данного пульсара остается почти постоянной, отдельные детали профиля («истинного», а не усредненного «синтетического») могут в пределах «окна» перемещаться. У некоторых пульсаров такие перемещения носят удивительно регулярный характер. В таких случаях субимпульсы как бы перемещаются, «дрейфуют» в пределах «окна». Это явление впервые наблюдалось у пульсара PSR 1919+21. Сейчас уже известно довольно значительное количество пульсаров, где этот феномен наблюдается. На рис. 21.5 приводится схема, иллюстрирующая это интересное явление. Для таких пульсаров можно определить второй период, определяемый как промежуток времени, в течение которого их профиль повторяется. Обычно второй период P2 в несколько раз длиннее основного периода P1, определяемого вращением нейтронной звезды. Следует, однако, подчеркнуть, что второй период P2 отнюдь не отличается той прецизионной точностью, которая характерна для основного периода P1.

Из разных вариаций, которым подвержены профили импульсов пульсаров, едва ли не самым загадочным является полное прекращение радиоизлучения в течение значительного количества периодов. Так, излучение пульсара PSR 1237+25 внезапно «пропадает» на несколько минут, после чего «оживает» без малейшего сбоя периода. У пульсара PSR 0809+74 иногда «пропадает» несколько периодов. Такие явления, скорее всего, указывают на то, что по каким-то причинам у вращающейся нейтронной звезды внезапно прекращается радиоизлучение. В этой связи следует подчеркнуть, что детали основного процесса радиоизлучения пульсаров, приведшего к их открытию, все еще далеки от ясности. Ниже мы еще вернемся к этой проблеме.

Хотя природа радиоизлучения пульсаров пока еще довольно темна и загадочна, само по себе это излучение открыло новые, очень богатые возможности изучения межзвездной среды. Астрономы сразу же по достоинству оценили замечательную особенность этого радиоизлучения: его импульсный характер. Весьма полезным является и то, что радиоизлучение в ряде случаев оказалось линейно поляризованным. Все эти свойства пульсарного радиоизлучения позволяют использовать его как весьма эффективный зонд для изучения межзвездной среды. Прежде всего нашло себе применение явление дисперсии импульсов радиоизлучения от пульсаров в межзвездной среде. Об этом интереснейшем явлении стоит поговорить более подробно. Одинакова ли скорость распространения всех электромагнитных волн в межзвездной среде? Ведь ясно, что даже очень маленькая разница в скорости распространения электромагнитных волн различной длины в принципе могла бы дать вполне измеримый эффект, так как при огромных межзвездных расстояниях происходило бы непрерывное «накопление» разности времен прихода импульсов на разных волнах. На рубеже этого столетия наш самобытный астроном Г. А. Тихов пытался обнаружить такой эффект у затменно-двойных звезд: если бы эффект существовал, моменты звездных затмений в лучах разного цвета (например, синего и красного) должны были бы отличаться. Тогдашние сведения о природе межзвездной среды, однако, были даже не в зачаточном, а просто в нулевом состоянии. Только спустя несколько лет Гартманом были открыты линии межзвездного кальция, положившие начало изучению межзвездной среды (см. § 2). Теперь-то мы хорошо знаем, сколь несостоятельна была попытка Г. А. Тихова обнаружить межзвездную дисперсию света. Ведь плотность межзвездной среды настолько мала, что из-за обычной дисперсии даже на пути в 1000 световых лет импульс красного света опередит одновременно с ним излученный импульс синего света всего лишь на ничтожную долю секунды.

Открытие космического радиоизлучения коренным образом изменило старую проблему обнаружения дисперсии электромагнитных волн в межзвездной среде. Последнюю всегда можно рассматривать как плазму (даже в «зонах Н I», где водород не ионизован; см. § 2). Теория распространения и дисперсии радиоволн в плазме является очень хорошо разработанным отделом макроскопической физики. Приведем только выражение для показателя преломления электромагнитных волн в плазме, в которой магнитное поле отсутствует:

(21.1)

Здесь Ne — концентрация свободных электронов в плазме,  — частота излучения.

Как видно из формулы (21.1), показатель преломления плазмы для радиоволн меньше единицы. Как известно из элементарного курса физики, скорость распространения электромагнитных волн в среде с показателем преломления n 3ф = c/n, где c = 3 1010 см/с — скорость света в вакууме. Коль скоро n меньше единицы, 3ф > c, что как будто бы противоречит специальному принципу относительности. Никакого противоречия, однако, здесь нет. Дело в том, что 3ф есть так называемая «фазовая скорость», относящаяся к строго определенной частоте волны. Принцип относительности утверждает, что нельзя передавать сигналы со сверхсветовой скоростью. Однако при помощи так называемой «монохроматической волны» (т. е. волны со строго определенной частотой) никакого сигнала передать нельзя. Для этого надо пользоваться группой волн, частоты которых слегка различны. Такая группа волн (или «волновой пакет») распространяется в среде с некоторой групповой скоростью, которая отличается от фазовой. В случае распространения волн в достаточно разреженной плазме групповая скорость выражается формулой

1 ... 90 91 92 93 94 95 96 97 98 ... 117
На этой странице вы можете бесплатно читать книгу Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович бесплатно.
Похожие на Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович книги

Оставить комментарий