Я от руки соединил нейроны в этой сети, но это специфические английские соединения, и в реальном человеческом мозге их еще предстоит изучить. Продолжая нашу фантазию на тему нейронных сетей, попробуйте вообразить себе, как такая сеть может выглядеть в мозге младенца. Допустим, что каждая из совокупностей нейронов там уже есть изначально. Но везде, где я проводил стрелочку от одного-единственного нейрона в одной совокупности (кружку) к одному-единственному нейрону в другой, вообразите себе пучок стрелочек от каждого нейрона в одной совокупности к каждому нейрону в другой. Это соответствует тому, появления чего ребенок на врожденном уровне там и «ожидает»: например, суффиксов того или иного лица, числа, времени или вида, а также возможных нерегулярных форм для комбинаций вышеперечисленного; но при этом ребенок не знает наверняка, какие комбинации, суффиксы или нерегулярные формы встретятся в определенном языке. Их усваивание соответствует укреплению некоторых синапсов, на которые указывают стрелочки (обозначенные на схеме), и тому, что другие остаются невидимыми. Это может функционировать следующим образом. Представьте себе, что когда ребенок слышит слово с z в суффиксе, то активируется нейрон z в совокупности, соответствующей суффиксу на правом краю схемы, а когда ребенок думает о третьем лице, единственном числе, настоящем времени и постоянном виде (составные части воспринимаемого им события), то эти четыре нейрона на левом краю тоже активизируются. Если активизация распространяется назад так же, как и вперед, и если синапс укрепляется каждый раз при активизации в то же время, когда уже активен нейрон внешней связи, то укрепляются все синапсы — связи между «3-е», «единственное», «настоящее», «постоянный» — с одной стороны, и «z» — с другой стороны. Стоит этому повториться достаточное количество раз — и отчасти специфицированная нейронная сеть у новорожденного приобретает вид, характерный для взрослого человека (что я и описал).
Давайте еще больше увеличим масштаб наблюдаемых объектов. Какой же первопаяльщик позаботился о том, чтобы между совокупностями нейронов были врожденные потенциальные соединения? Эта одна из самых «горячих» тем в современной неврологии, и мы начинаем получать смутное представление о том, как закладываются связи в мозге эмбриона. Конечно, имеются в виду не языковые области у человека, но глазные яблоки у дрозофил, зрительные бугры у африканских хорьков и зрительные участки коры головного мозга у кошек и обезьян. Нейроны, предназначенные стать частью определенных областей коры, зарождаются в специфических областях вдоль стенок желудочков — наполненных жидкостью полостей в центре мозговых полушарий. Затем они перемещаются наружу по направлению к черепу до своего итогового местонахождения в коре головного мозга вдоль канатиков, образованных вспомогательными клетками, которые вместе с нейронами составляют массу мозга. Соединения между нейронами на различных участках коры часто образуются тогда, когда являющаяся целью соединения область испускает некоторое химическое вещество, и аксоны, растущие в разных направлениях от источника этого вещества, «вынюхивают» его и следуют тому направлению, в котором увеличивается его концентрация, подобно тому, как корни дерева растут в сторону источников жидкости и удобрений. Аксоны также чувствуют присутствие специфических молекул на тех поверхностях (состоящих из вспомогательных клеток), к которым они продвигаются, и могут сами определять свое направление, подобно Гензелю и Гретель, которые шли, ориентируясь на хлебные крошки. Как только аксоны достигают близости целевой области, могут образоваться более точные синаптические соединения, потому что на поверхности растущего аксона и нейрона-цели есть определенные молекулы, подходящие друг к другу как ключ и замок, которые прочно сцепляются друг с другом. Но в то же время эти изначальные соединения обычно довольно беспорядочны, поскольку нейроны обильно высылают вперед свои растущие аксоны, которые соединяются с любыми неподходящими целями. Неподходящие соединения отмирают, возможно, из-за того, что их цели не могут обеспечить химические вещества, необходимые для их выживания, а возможно, и из-за того, что образованные ими связи недостаточно используются, когда мозг начинает работать во время внутриутробного развития.
Старайтесь не отставать от меня во время этого нейро-мифологического дознания — мы начинаем приближаться к «грамматическим генам». Те молекулы, которые направляют, соединяют и сохраняют нейроны, — это белки. Структура белка определяется геном, а ген — это последовательность оснований в цепочке ДНК, которая находится в хромосоме. Ген начинает функционировать благодаря «транскрипционным факторам» и другим регулирующим молекулам — тем аппаратам, которые считывают последовательность основ где-либо в молекуле ДНК и раскрывают соседнюю цепочку, позволяя этому гену быть расшифрованным в РНК, которая затем переводится в белок. Как правило, эти регулирующие факторы сами являются белками, поэтому процесс построения организма — это хитроумное чередование того, как ДНК образует белки, некоторые из которых взаимодействуют с другими ДНК для образования новых белков и т.д. Небольшие различия во времени образования и количестве белков могут иметь огромные последствия для строящегося организма.
Таким образом, один-единственный ген редко определяет какую бы то ни было идентифицируемую часть организма. Вместо этого он обуславливает выход белка в определенное время в ходе развития, что будет составной частью непостижимо сложного рецепта, обычно влияющего на формирование комплекса частей, которые также подвержены влиянию многих других генов. В частности, у связей внутри мозга сложные взаимоотношения с образующими их генами. Молекула на поверхности может быть использована не в одной-единственной системе, но во многих, каждой из которых руководит точно установленная комбинация. Например, если существуют три белка X, Y и Z, которые могут располагаться на мембране, один аксон может прикрепиться к поверхности, на которой есть X и Y, но не Z, а другой может прикрепиться к поверхности, на которой есть Y и Z, но не X. По подсчетам ученых-неврологов, при строительстве мозга и нервной системы используется около тридцати тысяч генов — бо́льшая часть человеческого генома.
А все начинается с одной-единственной клетки — оплодотворенной яйцеклетки. В ней содержится два экземпляра каждой хромосомы: один — от отца, другой — от матери. Каждая родительская хромосома была изначально составлена в родительских гонадах путем случайного сращения частей хромосом бабушки и дедушки.
И, наконец, мы приблизились к той точке, в которой можем определить, чем же могут являться грамматические гены. Грамматические гены могут быть последовательностями ДНК, кодирующими белки или запускающими процесс транскрипции белков в определенное время и в определенных зонах мозга, которые направляют нейроны, привлекают или сцепляют нейроны в сети, что в сочетании с синаптической настройкой, происходящей во время обучения, необходимо, чтобы вычислить решение той или иной грамматической проблемы (например, выбора суффикса слова).
* * *
Так существуют ли грамматические гены, или сама идея этого кажется бредовой? Можно ли ожидать, что разыграется сценарий карикатуры Брайана Даффи, нарисованной в 1990 г.? Свинья, встав на задние ноги, спрашивает фермера: «Что у нас сегодня на ужин? Надеюсь, не я». Фермер говорит своему товарищу: «А вот этой был имплантирован человеческий ген».
Какие бы ни были грамматические гены, в наше время не существует возможности напрямую установить их наличие у каждого человека. Но, как это часто бывает в биологии, легче всего идентифицировать гены, когда они соотносятся с какими-то различиями между особями, а различия часто выражены в какой-то патологии.
Мы, конечно, знаем, что сперма и яйцеклетка несут в себе нечто, что влияет на языковые способности ребенка, вырастающего благодаря их союзу. Заикание, дислексия (трудности при чтении, часто имеющие отношение к трудностям при мысленном разбиении слогов на фонемы) и специфическое нарушение речи (СНР) встречаются у членов одной и той же семьи. Это еще не доказывает, что вышеперечисленное передается на генетическом уровне (кулинарные рецепты и материальное благосостояние тоже передаются от родителей к детям), но, эти три синдрома очевидно, генетические. В каждом из случаев не существует приемлемого объяснения того, какой фактор окружающей среды мог воздействовать на пораженных синдромом членов семьи, не затронув при этом других. И эти синдромы гораздо чаще поражают обоих членов пары однояйцевых близнецов, у которых общие и окружающая среда и все ДНК, чем обоих членов пары разнояйцевых близнецов, у которых общая окружающая среда, но только половина ДНК. Например, однояйцевые близнецы четырех лет склонны коверкать одни и те же слова чаще, чем разнояйцевые близнецы, а если у ребенка специфическое нарушение речи, то в 80 % случаев оно будет у однояйцевого близнеца, но только в 35 % случаев — у разнояйцевого близнеца. Было бы интересно проследить, копируют ли приемные дети своих биологических членов семьи, у которых общие с ними ДНК, но разная окружающая среда. Я не знаком с какими-либо исследованиями случаев СНР и дислексии у приемных детей, но одно исследование выявило, что параметр ранней языковой способности на первом году жизни (параметр, включающий словарный запас, звукоподражания, сочетание слов, лепет и понимание слов) соотносим с общей познавательной способностью и памятью родной матери, но не приемных отца или матери.