Николя Жизан
Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
Издательство благодарит Russian Quantum Center, Сергея Белоусова и Виктора Орловского за помощь в подготовке издания
Переводчик К. Ефимова
Редактор И. Лисов
Руководитель проекта А. Тарасова
Корректор Е. Аксёнова
Компьютерная верстка М. Поташкин
Дизайн обложки Ю. Буга
© Odile Jacob, 2012
© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2016
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
* * *
Разумный человек приспосабливается к миру, неразумный – упорно пытается приспособить мир к себе. Поэтому прогресс зависит от неразумных людей.
Джордж Бернард Шоу
Я могу представить себе такое будущее, в котором мы будем для роботов тем, чем сейчас являются собаки для людей.
Клод Шеннон
Предисловие
«Любовь с первого взгляда!» – так Николя Жизан описал свои ощущения в день, когда он узнал о теореме Белла. Услышав это, я снова вернулся в тот осенний день 1974 года, когда, погруженный в изучение малоизвестной в то время работы Джона Белла, я понял, что спор между Бором и Эйнштейном об интерпретации квантовой механики может быть разрешен экспериментально. Не так уж много физиков были осведомлены о проблеме, поднятой Эйнштейном, Подольским и Розеном, немногие слышали о неравенствах Белла, и совсем мало было тех, кто считал вопросы основополагающих концепций квантовой механики достойными серьезного внимания. Работу ЭПР, опубликованную в 1935 году в журнале Physical Review, можно было легко найти в университетских библиотеках, чего нельзя было сказать о работе Белла, опубликованной в неизвестном новом журнале, которому суждено было исчезнуть после четвертого выпуска. В те времена, когда еще не существовало Интернета, работы, которые не были опубликованы в крупных журналах, приходилось распространять в фотокопиях. Моя собственная копия досталась мне из папки, которую собрал Кристиан Эмбер (Christian Imbert), молодой профессор Института Оптики, по случаю визита Эбнера Шимони (Abner Shimony), приглашенного в Орсэ Бернаром д’Эспанья (Bernard d’Espagnat). Очарованный идеями Белла, я решил, что моя докторская диссертация будет основана на экспериментальных тестах неравенств Белла, и Эмбер согласился взять меня под свое крыло.
В удивительно ясной работе Белла я увидел серьезный вызов для экспериментаторов: изменение ориентации поляризационных детекторов, в то время как запутанные частицы распространяются от источника в область измерения. Было необходимо исключить влияние ориентации поляризатора как на механизм излучения, так и на измерение, применяя для этого принцип релятивистской причинности, который запрещает распространение любых физических эффектов со скоростью выше скорости света. Такой эксперимент мог бы объяснить саму суть конфликта между квантовой механикой, с одной стороны, и мировоззрением Эйнштейна – с другой.
Эйнштейн защищал локальный реализм, сочетавший два принципа. Первый утверждал физическую реальность системы. Второй – гипотеза о локальности – что система не подвержена влиянию событий, происходящих в другой системе, отделенной от первой пространственно-подобным интервалом пространства-времени, поскольку в противном случае две системы должны были бы обмениваться воздействиями, распространяющимися быстрее света. В итоге наши эксперименты подтвердили предсказания квантовой механики, и физикам пришлось отказаться от локального реализма – от взгляда на мир, который так убедительно защищал Эйнштейн. Но от чего же следовало отказаться – от реализма или от локальности?
Идея отказа от понятия физической реальности не представляется мне убедительной. Я вижу роль ученого как раз в описании реальности мироздания, а не просто в предсказании результатов, которые покажут наши измерительные приборы. Но если в этой части квантовая механика находит подтверждение, – а сегодня этот вывод представляется неизбежным, – то означает ли это, что мы должны принять существование нелокальных взаимодействий, которые явным образом противоречат принципу релятивистской причинности Эйнштейна? И есть ли надежда когда-нибудь использовать эту квантовую нелокальность для передачи полезного сигнала, например включения лампы или размещения ордера на фондовой бирже, со сверхсветовой скоростью? Но как раз здесь проявляется другая характерная черта квантовой механики, а именно: существование фундаментальной квантовой неопределенности. Из-за нее становится совершенно невозможным повлиять на фактический результат любого эксперимента, если квантовая механика говорит о том, что возможны несколько результатов. Да, квантовая механика позволяет очень точно рассчитать вероятность каждого из возможных результатов, но эти вероятности имеют лишь статистический смысл при многократном повторении эксперимента, но ничего не говорят нам о результате одного конкретного эксперимента. Именно эта фундаментальная квантовая случайность запрещает возможность сверхсветовой коммуникации.
Среди многих популярных изложений последних достижений квантовой физики книга Николя Жизана подчеркивает ключевую роль фундаментальной квантовой случайности, не будь которой, мы бы могли рассчитывать на изобретение сверхсветового телеграфа. Если это научно-фантастическое изобретение когда-нибудь воплотится в жизнь, нам придется радикально пересмотреть все, что мы знаем о физике. Я совсем не имею в виду, что существуют неприкасаемые и непреложные физические законы, неподвластные никакому пересмотру. Совсем наоборот, лично я уверен, что каждая физическая теория однажды будет заменена другой теорией большего масштаба. Но некоторые из теорий настолько фундаментальны, что их пересмотр влечет за собой концептуальную революцию с далеко идущими последствиями. И хотя нам всем известны несколько примеров таких переворотов в истории человечества, они тем не менее столь исключительны, что к ним не следует относиться спокойно. В этом контексте объяснение, почему квантовая нелокальность, какой бы сверхъестественной она ни казалась, не может низвергнуть принцип релятивистской причинности, который запрещает сверхсветовую коммуникацию, кажется мне очень важной темой в книге Николя Жизана.
Тот факт, что эта книга занимает определенную позицию по этому вопросу, вразрез с другими популярными взглядами, неудивителен. Николя Жизан является одним из ключевых игроков в новой квантовой революции, которая произошла в последней четверти ХХ столетия.
Первая квантовая революция, в начале ХХ века, основывалась на открытии корпускулярно-волнового дуализма. Это открытие дало способ довольно точно описать статистическое поведение атомов, из которых состоит материя, облаков электронов, которые переносят электрический ток в металле или полупроводнике, и миллиардов и миллиардов фотонов в луче света. У нас появился инструментарий для понимания механических свойств твердых тел, в то время как классическая физика не могла объяснить, почему вещество, состоящее из положительных и отрицательных зарядов, которые притягивают друг друга, не сплющивается. Квантовая механика дала точное количественное описание электрических и оптических свойств материалов и предложила систему концепций, необходимую для описания таких удивительных явлений, как сверхпроводимость и странные свойства определенных элементарных частиц. В эту первую квантовую революцию физики изобрели новые приборы: транзистор, лазер, интегральные схемы, благодаря чему сегодня мы живем в информационном обществе.
Но уже к 1960-м годам физики начали задавать новые вопросы, которые в первую квантовую революцию оставались за кадром:
• Как можно применять квантовую физику, если все ее предсказания носят чисто статистический характер и относятся к отдельным микроскопическим объектам?