Summary
Due to the appearance of numerous organic molecules and to the presence of condenced water on the Earth, further evolution of substance towards formation of prebiological, and later biological systems became possible. Increased concentration of organic molecules in the waters of «primary ocean» should be considered as the most important stage, which enabled the appearance of protobionts. Theoretical and empirical models of these processes were suggested by many scientists. Thus, owing to the studies of S. Fox, an English biologist, of Russian academician A. I. Oparin, and many other specialists, it turned possible to get an idea about the processes that enabled concentration of substances in the waters of the ancient Earth.
Опорные точки
1. Органические вещества по отношению к воде подразделяются на две крупные группы: гидрофобные и гидрофильные.
2. В водных растворах гидрофильные молекулы диссоциируют, образуя заряженные частицы.
3. Крупные органические молекулы, обладающие зарядом, либо связываются с субстратом, либо взаимодействуют друг с другом, в результате чего формируются коацерваты.
Вопросы для повторения и задания
1. Что такое коацервация, коацерват?
2. На каких модельных системах можно продемонстрировать образование коацерватных капель в растворе?
3. Какие возможности для преодоления низких концентраций органических веществ существовали в водах первичного океана?
4. В чем заключаются преимущества для взаимодействия органических молекул в зонах высоких концентраций веществ?
Используя словарный запас рубрик «Терминология» и «Summary», переведите на английский язык пункты «Опорных точек».
Терминология
Каждому термину, указанному в левой колонке, подберите соответствующее ему определение, приведенное в правой колонке на русском и английском языках.
Select the correct definition for every term in the left column from English and Russian variants listed in the right column.
Вопросы для обсуждения
Как вы думаете, могут ли в современных земных условиях образовываться небиологическим путем органические молекулы? Коацерваты?
Каковы перспективы эволюции коацерватов, полученных экспериментальным путем, в окружающей среде?
2.4. Эволюция протобионтов
Анализируя описанные гипотезы, можно прийти к заключению о том, что развитие такой системы взаимодействия органических «автоматов» добиологической природы происходило различными способами и продолжалось длительное время. Однако главными направлениями эволюции, приведшей к возникновению биологических систем, следует считать ряд событий, среди которых: эволюция протобионтов, возникновение каталитической активности белков, появление генетического кода и способов преобразования энергии.
Возникновение энергетических систем. В условиях Земли основной механизм, с помощью которого малые органические молекулы можно сделать реакционно способными в водном растворе, заключается в соединении этих молекул с различными формами фосфата.
При переносе фосфатной группы энергия высвобождается или поглощается, поэтому в биологических системах, благодаря таким переносам, энергия запасается и затем используется в реакциях конденсации или в обмене веществ. В настоящее время высокоэнергетические связи, образуемые между фосфатами и органическими соединениями, обеспечивают протекание всех биологических реакций. Не исключено, что это справедливо и для протоклеток.
Очень многие малые органические биомолекулы способны легко вступать почти во все реакции в присутствии больших количеств воды только в том случае, когда они активированы фосфатом; следовательно, синтез полимеров и в протоклетках обеспечивали активированные фосфатом промежуточные соединения. Реакции конденсации с отщеплением воды не свойственны современным биохимическим процессам, а реакции с переносом фосфата и сейчас, и ранее составляли единственный путь осуществления конденсации мономеров. Для проведения реакций переноса фосфата требуется источник высокоэнергетического фосфата, простейшей формой которого является пирофосфат:
Эта молекула неустойчива в водном растворе, и поэтому протоклетке был доступен лишь растворенный неорганический фосфат. В ходе эволюции отбирались более длинные полипептидные цепочки, обладающие способностью ускорять течение определенной химической реакции, т. е. взаимодействующие с конкретным субстратом. Откуда же мог взяться необходимый для реакции пирофосфат? Вероятно, фотосинтетическое образование пирофосфата было одним из важных свойств первичного метаболизма протоклеток. Современные фотосинтезирующие клетки синтезируют в качестве аккумулятора энергии аденозинтрифосфат из аденозиндифосфата. Этот процесс гораздо более эффективен, чем механизм образования пирофосфата, предложенный для протоклеток, но схема его по существу та же. Замена реакций конденсации с отщеплением воды на реакции с переносом фосфата, составляющие основу биохимических процессов у всех ныне существующих организмов, началась с первой протоклеткой.
Образование полимеров. Создание правдоподобной модели протоклеток, возникавших в ранний период в неустойчивых мелких водоемах, представляется возможным. Но эти протоклетки весьма далеки от того, что мы назвали бы клеткой, поскольку они не имеют ни генетического, ни синтезирующего белок аппарата. Любой нерегулярный полимер, синтезированный в протоклетке, в лучшем случае мог бы передаваться от одной клетки другой в какой-то одной линии потомства и в конце концов подвергся бы распаду. Еще Фокс показал, что произвольно организованные полипептидные молекулы обладают неспецифической каталитической активностью благодаря наличию на их поверхности многочисленных и разнообразных зарядов. В силу этого протобионты, обладающие разнообразными пептидами, оказывались в более благоприятном положении, так как имели больше возможностей по преобразованию молекул, поступающих из окружающей среды. При этом, чем более активна оказывалась молекула белка как катализатор, тем больше пользы она приносила ее обладателю. По-видимому, в это же время происходило становление генетического кода, т. е. такой организации ДНК и РНК, при которой последовательность нуклеотидов в полинуклеотидных цепях нуклеиновых кислот стала нести информацию о наиболее удачных, в смысле каталитической активности, молекулах белка.
Эволюция метаболизма. С появлением примитивного генетического аппарата обладавшие им протоклетки смогли передавать всем своим потомкам способность синтезировать специфические полипептиды. Образующиеся из них линии давали семейства родственных протоклеток с наследуемыми свойствами, которые подвергались естественному отбору.
Обладающие наследственным материалом протоклетки могли довольно быстро развить способность к синтезу крупных белков, имеющих множество различных функций. После того как в состав примитивной клетки стали входить большие молекулы, обладающие разнообразными функциональными возможностями, стало возможным говорить о ее биологической природе.
Как предполагают ученые, в это время внешняя среда представляла собой постоянный источник всех необходимых малых молекул, а в результате фотосинтетического использования солнечного ультрафиолетового излучения становилась доступной химическая энергия для получения пирофосфата. После заселения этой среды первичными клетками она изменялась. Некоторые низкомолекулярные питательные вещества использовались быстрее, чем внешняя среда могла их поставлять. Начинало сильно сказываться давление отбора, благодаря которому преимущества приобретали те клетки, которые оказались способны модифицировать соединения, родственные недостающим, превращая их в необходимые клетке молекулы.
В целом метаболизм представляет собой ряд стадий, осуществляемых посредством ферментов, на каждой из которых молекула слегка видоизменяется до тех пор, пока не образуется необходимое соединение.
Все биологические системы используют одинаковые пути биохимических превращений – одинаковые пути метаболизма Сахаров, синтеза аминокислот, синтеза и распада жиров и т. д. Существующую универсальность метаболических путей можно объяснить двояко. Во-первых, все современные живые существа могут являться потомками исходной предковой популяции первичных клеток. Во-вторых, каждый метаболический путь в современных биохимических процессах может представлять собой результат эволюции клетки в направлении максимального использования единственно пригодных для этого молекул.
По мере повышения разнообразия метаболических процессов со все возрастающей скоростью возникают новые экологические ниши, т. е. осваиваются новые условия обитания.
В водоемах на глубине уже нескольких метров большая часть ультрафиолета поглощается водой, тогда как видимый свет проникает на большую глубину. Можно представить себе интенсивный отбор организмов, проходивший в тот ранний период в отношении использования видимого солнечного света. Для такого отбора существенным было наличие в организме хлорофилла и системы транспорта электронов.