Мы уже упомянули, что плоский конденсатор, который мы рассматривали, похож, с одной стороны, на емкость, а с другой— на индуктивность. От электрического поля возникают заряды на поверхностях обкладок, а от магнитного — обратные э.д.с. Не может ли оказаться, что перед нами уже готовый резонансный контур? Оказывается, да. Представьте, что мы выбрали такую частоту, при которой картина электрического поля падает до нуля на каком-то расстоянии от края диска; иначе говоря, мы выбрали wa/с большим, чем 2,405. Всюду на окружности, центр которой лежит на оси обкладок, электрическое поле обратится в нуль. Возьмем кусок жести и вырежем полоску такой ширины, чтобы она как раз поместилась между плоскими обкладками конденсатора. Затем изогнем ее в форме цилиндра такого радиуса, на котором электрическое поле равно нулю. Раз там нет электрического поля, то по вставленному в конденсатор цилиндру никаких токов не потечет, и ни электрические, ни магнитные поля не изменятся. Мы, стало быть, смогли закоротить друг на друга обкладки конденсатора, ничего не изменив в нем. И посмотрите, что получилось: вышла настоящая цилиндрическая банка с электрическим и магнитным полями внутри, причем никак не связанная с внешним миром. Поля внутри не изменятся, даже если отрезать выступающие края обкладок и провода, ведущие к конденсатору. Останется только закрытая банка с электрическим и магнитным полями внутри нее (фиг. 23.7,а). Электрические поля колеблются то вперед, то назад с частотой w, которая, не забывайте, определила собою диаметр банки. Амплитуда колеблющегося поля Е меняется с расстоянием от оси банки так, как показано на фиг. 23.7,6. Кривая эта — просто первая дуга функции Бесселя нулевого порядка. В банке есть еще и круговое магнитное поле, которое колеблется во времени со сдвигом по фазе на 90° относительно электрического поля.
Магнитное поле можно тоже разложить в ряд и изобразить на графике, как это сделано на фиг. 23.7,е.
Но как же это получается, что внутри банки могут существовать электрические и магнитные поля, не соединенные с внешним миром? Оттого, что электрическое и магнитное поля сами себя поддерживают: изменение Е создает В, а изменение В создает Е,— все в согласии с уравнениями Максвелла. Магнитное поле ответственно за индуктивность, электрическое — за емкость; вместе они создают нечто, похожее на резонансный контур. Заметьте, что описанные нами условия возникают лишь тогда, когда радиус банки в точности равен 2,405 с/w. В банке заданного радиуса колеблющиеся электрическое и магнитное поля будут поддерживать друг друга (описанным способом) лишь при этой определенной частоте. Итак, цилиндрическая банка радиуса r резонирует при частоте
(23.18)
Мы сказали, что если банка совершенно закрыта, то поля продолжают колебаться так же, как и раньше. Это не совсем так. Это было бы так, если бы стенки банки были идеальными проводниками. В реальной банке, однако, колеблющиеся токи, текущие по стенкам, могут из-за сопротивления материала терять энергию. Колебания полей постепенно замрут. Из фиг. 23.7 ясно, что там должны существовать сильные токи, связанные с электрическими и магнитными полями внутри полости. Из-за того, что вертикальное электрическое поле внезапно исчезает на верхнем и нижнем торцах банки, у него возникает там сильная дивергенция; значит, на внутренней поверхности банки должны появляться положительные и отрицательные заряды (фиг. 23.7, а). Когда электрическое поле меняет направление на обратное, должны менять знак и заряды, так что между верхним и нижним торцами банки должен течь переменный ток.
Фиг. 23.8. Подключение резонансной полости.
Он будет течь по боковой поверхности банки, как показано на рисунке. То, что по бокам банки должны течь токи, можно понять ещё, рассмотрев то, что происходит в магнитном поле. Кривая на фиг. 23.7, в сообщает нам, что магнитное поле на краю банки внезапно обращается в нуль. Такое внезапное изменение магнитного поля может произойти лишь оттого, что по стенке течет ток. Этот ток как раз и создает переменные электрические заряды на верхней и нижней обкладках банки.
Вас может удивить наше открытие — обнаружение токов на боковых сторонах банки. А как же с нашим прежним утверждением, что ничего не изменится, если в области, где электрическое поле равно нулю, поставить эти боковые стенки? Вспомните, однако, что, когда мы впервые вставляли в конденсатор эти боковые стенки, верхняя и нижняя обкладки выступали за них, так что магнитные поля оказывались и снаружи нашей банки. И только когда мы отрезали выступающие за края банки части конденсатора, на внутренней части боковых стенок появились какие-то токи.
Хоть электрические и магнитные поля в абсолютно закрытой банке из-за потерь энергии постепенно исчезнут, можно сделать так, чтобы этого не было. Для этого надо провертеть в банке сбоку дырочку и понемножку подбавлять энергию, чтобы возмещать потери. Надо взять проволочку, просунуть ее через дырочку в банке и припаять ее к внутренней части стенки, чтобы получилась петля (фиг. 23.8). Если подсоединить эту проволочку к источнику высокочастотного переменного тока, то этот ток будет снабжать энергией электрическое и магнитное поля полости и поддерживать колебания. Это произойдет, конечно, лишь в том случае, если частота источника энергии совпадет с резонансной частотой банки.
Фиг. 23.9. Устройство для наблюдения резонанса в полости.
Фиг. 23.10. Кривая отклика, на частоту для резонансной полости.
Если частота у источника не та, то электрические и магнитные поля резонировать не будут и поля в банке окажутся слабенькими.
Резонансное поведение легко наблюдать, если в банке проделать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вторую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженности полей в полости. Представьте теперь, что входная петля нашей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9). Сигнал-генератор состоит из источника переменного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной петли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-генератора, то получится кривая, похожая на изображенную на фиг. 23.10. Ток на выходе невелик на всех частотах, кроме тех, которые близки к w0— резонансной частоте полости. Резонансная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно получается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.
§ 4. Собственные колебания полости
Предположим, что мы пытаемся проверить свою теорию и делаем измерения с настоящей банкой. Мы берем банку в форме цилиндра диаметром 7,5 см и высотой около 6,3 см. К ней приделываются входная и выходная петли (см. фиг. 23.8). Если рассчитать ожидаемую для этой банки резонансную частоту по формуле (23.18), то получится f0=w0/2p=3010 Мгц. Мы берем сигнал-генератор с частотой около 3000 Мгц и начинаем слегка ее варьировать, пока не появляется резонанс; мы замечаем, что наибольший ток на выходе возникает, скажем, при частоте 3050 Мгц. Это очень близко к предсказанной резонансной частоте, но до конца не совпадает. Можно привести несколько мыслимых причин расхождения. Может быть, резонансная частота немного изменилась, потому что мы прорезали несколько дырок, чтобы вставить соединительные петли. Но это вряд ли: дырки должны были бы слегка понизить резонансную частоту, так что причина не в этом. Тогда, может быть, в калибровке частоты сигнал-генератора допущена небольшая ошибка или измерения диаметра полости недостаточно точны. Во всяком случае, согласие довольно хорошее.
Но гораздо важнее то, что произойдет, когда частота нашего сигнал-генератора уже значительно удалится от 3000 Мгц. Тогда мы получим такой результат, как на фиг. 23.11. Если начать сильнее менять частоту, то получится, что, кроме ожидавшегося резонанса близ 3000 Мгц, имеется еще другой резонанс возле 3300 Мгц и третий возле 3820 Мгц. Что означают эти добавочные резонансы? Разгадку дает фиг. 23.6. Там мы предположили, что на край банки приходится первый нуль функции Бесселя. Но ведь не исключено, что краю банки отвечает второй нуль функции Бесселя, так что в промежутке от центра банки до ее края происходит одно полное колебание электрического поля (фиг. 23.12, а). Такой тип колебаний полей вполне допустим, и естественно ожидать, что банка начнет резонировать на такой частоте. Но заметьте: второй нуль функции Бесселя наблюдается при x=5,52 (фиг. 23.12,6), т. е. более чем вдвое дальше, чем первый нуль. Значит, резонансная частота колебаний этого типа превышала бы 6000 Мгц. Ее, без сомнения, можно заметить, но это не объясняет нам резонанса при 3300 Мгц.