Рейтинговые книги
Читем онлайн 6a. Электродинамика - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 41

Фиг. 24.6. Магнитное по­ле в волноводе.

Кроме электриче­ских полей, существуют и магнитные поля, кото­рые тоже движутся вол­нообразно. Мы не будем сейчас заниматься выво­дом выражений для них. Ведь c2СXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt — наибольшее, т. е. на полпути между максимумом и миниму­мом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).

§ 3. Граничная частота

Уравнение (24.16) для kz на самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:

(24.20)

Смысл этих двух знаков просто в том, что волны в волноводе мо­гут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно мо­гут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.

Наше уравнение для kzсообщает нам также, что высшие час­тоты приводят к большим значениям kg, т. е. к более коротким волнам, пока в пределе больших w величина k не станет равной w/с — тому значению, которое бывает, когда волна бежит в пусто­те. Свет, который мы «видим» сквозь трубу, все еще бежит со ско­ростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота w станет чересчур малой, то под кор­нем в (24.20) внезапно появится отрицательное число. Это произойдет, когда w перевалит через pс/а или когда l0 станет боль­ше 2а. Иначе говоря, когда частота становится меньше некото­рой критической частоты wc=pс/а, волновое число kz(а также lg) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что kzдолжно быть действи­тельным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые kzтоже представляют какую-то волну?

Предположим, что w действительно меньше wc; тогда можно написать

(24.21)

где k' — действительное положительное число

(24.22)

Если теперь вернуться к нашей формуле (24.12) для Еy, то надо будет написать

(24.23)

что можно также представить в виде

(24.24)

Это выражение приводит к полю Е, которое во времени колеб­лется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.

Итак, при частотах ниже wсpс/а волны вдоль трубы не рас­пространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wсназы­вают «граничной частотой» волновода. Глядя на (24.22), мы ви­дим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоя­нии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.

Мы хотим еще раз подчеркнуть эту характерную черту на­шего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы полу­чаем мнимое число, то это обычно ничего физического не озна­чает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетво­ряется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн

Фиг. 24.7. Изменение Еy с ро­стом z при w<<wc.

Итак, если в любой задаче на волны k при какой-то частоте ста­новится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.

§ 4. Скорость волн в волноводе

Та скорость волн, о которой мы пока говорили,— это фа­зовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать

(24.25)

Для частот выше граничной (для которых бегущая волна суще­ствует) wc/w меньше единицы, vфаз— действительное число, боль­шее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерферен­цией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a dw/dk:

(24.26)

Дифференцируя (24.17) по w и переворачивая, чтобы полу­чить dw/dk, получаем

(24.27)

Это меньше скорости света.

Среднее геометрическое между vфази vгр в точности равно с — скорости света:

(24.28)

Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соот­ношением

(24.29)

Но в квантовой механике энергия — это hw, а импульс —это h/l’, или hk; значит, (24.29) можно записать так:

(24.30)

или

(24.31)

а это очень похоже на (24.17). . . Интересно, не правда ли? Групповая скорость волн — это также скорость, с какой энергия передается по трубе. Если вам нужно найти поток энер­гии сквозь волновод, надо умножить плотность энергии на груп­повую скорость. Если среднее квадратичное электрическое поле равно Е0, то средняя плотность электрической энергии равна e0Е20/2. Кроме этого, часть энергии связана с магнитным полем. Мы не будем здесь это доказывать, но в любой полости или трубе магнитная и электрическая энергии равны между собой, так что полная плотность электромагнитной энергии равна e0Е20. А мощность dU/dt, передаваемая волноводом, поэтому равна

(24.32)

(Позже мы рассмотрим другой, более общий способ вычисления потока энергии.)

§ 5. Как наблюдать волны в волноводе

Энергию в волновод можно ввести своего рода «антенной», воспользовавшись для этого, например, вертикальной прово­лочкой, или «штырем». В наличии волн в волноводе можно убедиться, отведя из него часть электромагнитной энергии с помо­щью приемной «антенки» — тоже какого-нибудь проволочного штыря или петельки. На фиг. 24.8 показан волновод, часть сте­нок на рисунке выхвачена, чтобы были видны входной штырь и приемный «пробник».

Фиг. 24.8. Волновод с входным штырем и пробником.

Входной штырь можно подключить через коаксиальный кабель к генератору сигналов, а приемный проб­ник таким же кабелем можно соединить с детектором. Обычно удобнее вводить пробник через длинную прорезь в стенке волно­вода. Тогда можно им водить вдоль волновода и замерять поле в разных местах.

Если подать с сигнал-генератора частоту w, большую, чем граничная частота wс, то по волноводу от штыря побегут волны. Если волновод бесконечной длины, то никаких волн, кроме этих, не будет (чтобы сделать его бесконечным, надо на конце его поставить тщательно сконструированный поглотитель, который не допустит отражения от этого конца). Тогда поскольку детектор измеряет поле близ пробника, усредненное по вре­мени, то он будет воспринимать сигнал, не зависящий от поло­жения в волноводе; на выходе будет регистрироваться величина, пропорциональная передаваемой мощности.

1 ... 11 12 13 14 15 16 17 18 19 ... 41
На этой странице вы можете бесплатно читать книгу 6a. Электродинамика - Ричард Фейнман бесплатно.

Оставить комментарий