Рейтинговые книги
Читем онлайн 3. Излучение. Волны. Кванты - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 27

§ 3. Синусоидальные волны.

Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой w. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2p/w, так как произведение w и периода есть полный период косинуса.

Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксиро­вано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осцилли­рует, когда мы меняем положение. Тогда по аналогии с w введем

так называемое волновое число и обозначим его через k. Оно опре­деляется как скорость изменения фазы с расстоянием (радианы на метр). Время при таком изменении остается фиксированным. Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное назва­ние — длина волны, а обозначается она буквой l. Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2p/k,потому что k, умноженное на длину волны, равно полному периоду ко­синуса. Итак, соотношение kl=2p полностью аналогично

wt0=2p.

В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше опре­деления k и w носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы j=w(t-r/с) и возьмем частную производную по r

(29.4)

Это соотношение можно записать разными способами:

Почему длина волны оказывается равной периоду, умножен­ному на c? Очень просто. Дело в том, что за время, равное одному периоду, волны, двигаясь со скоростью с, пройдут расстояние ct0, а, с другой стороны, это расстояние должно быть равно длине волны.

В других физических явлениях, когда приходится иметь дело не со светом, такого простого соотношения между k и w может и не быть. Пусть волна движется вдоль оси x, тогда распространение синусоидальной волны с частотой w и волновым числом k описывается общей формулой вида sin(wt-kx).

Введенное понятие длины волны позволяет уточнить пределы применимости формулы (29.1). Напомним, что поле складывается из нескольких частей: одна из них спадает как 1/r, другая — как 1/r2, а остальные падают с расстоянием еще быстрее. Имеет смысл выяснить: когда часть, спадающая по закону 1/r, наибо­лее существенна, а остальными можно пренебречь? Естественно ответить: «Когда мы отойдем достаточно далеко от источника, потому что член 1/г2 будет мал по сравнению с членом 1/r». Но что значит «достаточно далеко»? В общих чертах ответ таков: все остальные члены имеют порядок величины l/rпо сравнению с первым членом 1/г. Так что когда мы находимся на расстоянии нескольких длин волн от источника, формула (29.1) описывает поле в хорошем приближении. Область, удаленную от источника на расстояние, превышающее несколько длин волн, иногда называют «волновой зоной».

§ 4. Два дипольных излучателя

Рассмотрим теперь результирующее поле, которое возникает при одновременном действии двух осцилляторов. В предыдущей главе уже разбиралось несколько наиболее простых случаев. Мы дадим сначала качественную картину явления, а затем опи­шем те же эффекты с количественной точки зрения. Возьмем простейший случай, когда осцилляторы и детектор расположены в одной горизонтальной плоскости, а колебания осцилляторов происходят в вертикальном направлении.

На фиг. 29.5,а показан вид обоих осцилляторов сверху; в данном случае расстояние между ними в направлении север — юг равно половине длины волны и колеблются они в одной фазе, т.е. разность фаз осцилляторов равна нулю. Нас интересует интенсивность излучения в разных направлениях. Под интен­сивностью мы подразумеваем количество энергии, проходящей мимо нас в 1 сек; оно пропорционально квадрату напряженности поля, усредненному по времени. Так, для определения яркости света нужно взять квадрат напряженности электрического поля, а не саму напряженность. (Напряженность электрического поля характеризуется силой, с которой поле действует на неподвиж­ный заряд, а количество энергии, проходящей через некоторую площадку, пропорционально квадрату напряженности поля и измеряется в ваттах на квадратный метр. Коэффициент пропорциональности будет выведен в следующей главе.)

Фиг. 29.5. Зависимость интен­сивности излучения двух диполей, находящихся на расстоянии в по­ловину длины, волны, от направле­ния излучения.

aдиполи в фазе (a=0); 6 — диполи в противофаэе (a=p).

Если мы на­ходимся к западу от системы осцилляторов, к нам от обоих осцил­ляторов приходят поля, одинаковые по величине и с одной фа­зой, так что суммарное электрическое поле в два раза больше поля отдельного осциллятора. Следовательно, интенсивность будет в четыре раза больше интенсивности, возникающей от действия только одного осциллятора. (Числа на фиг. 29.5 ука­зывают интенсивность, причем за единицу измерения выбрана интенсивность излучения одного осциллятора, помещенного в начале координат.) Пусть теперь поле измеряется в северном или южном направлении, вдоль линии осцилляторов. Поскольку расстояние между осцилляторами равно половине длины волны, их поля излучения различаются по фазе ровно на полцикла, а следовательно, суммарное поле равно нулю. Для промежуточ­ного угла (равного 30°) интенсивность равна 2, т. е., уменьшаясь, интенсивность последовательно принимает значения 4, 2, 0 и т. д. Нам нужно научиться находить интенсивность для разных углов. По существу, это сводится к задаче о сложении двух ко­лебаний с разными фазами.

Давайте коротко рассмотрим еще несколько интересных случаев. Пусть расстояние между осцилляторами, как и раньше, равно половине длины волны, но колебания одного осциллятора отстают по фазе от колебаний другого на половину периода (см. фиг. 29.5, б). Интенсивность в горизонтальном направле­нии (западном или восточном) обращается в нуль, потому что один осциллятор «толкает» в одном направлении, а другой — в обратном. В северном направлении сигнал от ближайшего осциллятора приходит на полпериода раньше сигнала от даль­него осциллятора. Но последний запаздывает в своих колебаниях как раз на полпериода, так что оба сигнала приходят одновре­менно, и интенсивность в северном направлении равна 4. Интен­сивность под углом 30°, как будет показано позже, снова равна 2.

Теперь мы подошли к одному интересному свойству, весьма полезному на практике. Заметим, что фазовые соотношения меж­ду осцилляторами используются при передаче радиоволн. До­пустим, мы хотим направить радиосигнал на Гавайские острова. Используем для этого систему антенн, расположенную так, как показано на фиг. 29.5, а, и установим между ними нулевую разность фаз. Тогда максимальная интенсивность будет идти как раз в нужном направлении, поскольку Гавайские острова лежат на западе от США. На следующий день мы решим переда­вать сигналы уже в Канаду. А поскольку Канада находится на севере, нам надо только изменить знак одной из антенн, чтобы антенны находились в противофазе, как на фиг. 29.5, б, и передача пойдет на север. Можно придумать разные устройства системы антенн

Фиг. 29.6. Две диполъные антен­ны, дающие максимум излучения в одном направлении.

Наш способ—один из самых простых; мы можем значительно усложнить систему и, выбрав нужные фазовые соотношения, послать пучок с максимальной интенсивностью в требуемом направлении, даже не сдвинув с места ни одну из антенн! Однако в обеих радиопередачах мы затрачивали много энергии зря, она уходила в прямо противоположном направ­лении; интересно знать, есть ли способ посылать сигналы только в одном направлении? На первый взгляд кажется, что пара антенн такого типа будет всегда излучать симметрично. На самом деле картина гораздо разнообразнее; рассмотрим для при­мера случай несимметричного излучения двух антенн.

Пусть расстояние между антеннами равно четверти длины волны и северная антенна отстает от южной по фазе на четверть периода. Что у нас тогда получится (фиг. 29.6)? Как мы дальше покажем, в западном направлении интенсивность равна 2. В южном направлении получится нуль, потому что сигнал от северного источника N приходит на 90° позже сигнала от южного источника S и, кроме того, он отстает по фазе еще на 90°; в ре­зультате полная разность фаз есть 180° и суммарный эффект равен нулю. В северном направлении сигнал от источника N приходит на 90° раньше сигнала от S, поскольку источник N на четверть волны ближе. Но разность фаз равна 90° и компен­сирует задержку во времени, поэтому оба сигнала приходят с одной фазой, что дает интенсивность, равную 4.

1 ... 8 9 10 11 12 13 14 15 16 ... 27
На этой странице вы можете бесплатно читать книгу 3. Излучение. Волны. Кванты - Ричард Фейнман бесплатно.

Оставить комментарий