Рейтинговые книги
Читем онлайн 3. Излучение. Волны. Кванты - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 27

Как теперь получить формулу для электрического и магнит­ного поля одного заряда? Оказывается, это очень сложно; пона­добится затратить много труда и использовать тонкие доказа­тельства. Но не в этом дело. Мы написали законы, собственно, чтобы подчеркнуть красоту природы, показать, что все основные законы можно уместить на одной странице (с обозначениями чи­татель уже знаком). Точная и вполне строгая формула для поля, создаваемого отдельным зарядом, насколько мы знаем, имеет очень сложный вид (мы отвлекаемся от эффектов кванто­вой механики). Поэтому мы не будем выводить ее подробно, а запишем сразу, как она выглядит. На самом деле правильнее было бы записать законы электричества и магнетизма с помо­щью уравнений поля, о которых будет сказано позднее. Но там используются совсем иные понятия и обозначения, поэтому давайте сейчас напишем выражения для поля в уже знакомой нам форме, хотя она и не очень удобна для вычислений.

Электрическое поле Е дается выражением

(28.3)

Что означают отдельные члены в этом выражении? Возьмем первый из них,

Е=-qer’/4pe0r'2. Это уже знакомый нам закон Кулона; здесь q — заряд, создающий поле, er' - единичный вектор, направленный от точки Р, где измеряется поле Е, r — расстояние от Р до q. Но закон Кулона неточен. Открытия, сделанные в XIX веке, показали, что любое воздействие не мо­жет распространяться быстрее некоторой фундаментальной скорости с, называемой теперь скоростью света. Поэтому опре­делить положение заряда в настоящий момент времени не­возможно. Кроме того, на поле в данный момент времени может влиять только поведение заряда в прошлом. А как давно в прош­лом? Задержка во времени, или так называемое время запаздыва­ния, есть время, необходимое для прохождения расстояния от заряда до точки измерения поля Р со скоростью света с. Время запаздывания равно r'/с. Таким образом, первый член в (28.3) представляет собой не обычный, а запаздывающий закон Кулона.

Чтобы учесть запаздывание, мы поставили штрих у r, по­нимая под r' то расстояние, на которое в начальный момент сво­его воздействия был удален заряд q от точки Р. Представим на минуту, что заряд несет с собой световые сигналы, которые дви­жутся к точке Р со скоростью c. Тогда, глядя на заряд q, мы увидели бы его не в том месте, где он находится сейчас, а там, где он был некоторое время назад. В нашу формулу входит кажущееся направление er', так называемое запаздывающее направление, и запаздывающее расстояние r'. Это легко понять, но это еще не все. Дело, оказывается, еще гораздо сложнее.

В выражении (28.3) имеется и ряд других членов. Вторым членом природа как бы учитывает запаздывание в первом гру­бом приближении. Это поправка к запаздывающему кулоновскому члену; она представляет собой произведение скорости из­менения кулоновского поля и времени запаздывания. Но и это не все. Есть еще третий член — вторая производная по t единич­ного вектора, направленного к заряду. Этим исчерпывается фор­мула; мы учли все вклады в электрическое поле от произвольно движущегося заряда.

Магнитное поле выражается следующим образом:

(28.4)

Все предыдущее мы написали, чтобы показать красоту природы и, в некотором смысле, могущество математики. Говоря от­кровенно, мы даже не пытаемся понять, почему столь значитель­ные по содержанию формулы занимают так мало места, ведь в них содержится и принцип действия генераторов тока, и особенности поведения света — словом, все явления электричества и магнетизма. Конечно, для полноты картины нужно добавить еще кое-что о свойствах использованных материалов (свойствах вещества), которые пока не учтены в (28.3).

Заканчивая краткое описание представлений о мире в XIX веке, следует упомянуть еще об одном фундаментальном обоб­щении, к которому в большой степени причастен и Максвелл, а именно о единстве явлений механики и теплоты. Мы будем гово­рить об этом в ближайшем будущем.

В XX столетии обнаружили, что все законы динамики Нью­тона неправильны, и чтобы уточнить их, воспользовались кван­товой механикой. (Законы Ньютона справедливы для тел дос­таточно больших размеров.) Совсем недавно законы квантовой механики в совокупности с законами электромагнетизма по­служили основой для открытия законов квантовой электродина­мики. Кроме того, был открыт ряд новых явлений, и раньше других — явление радиоактивности, открытое Беккерелем в 1898 г. (он похитил его из-под самого носа у XX столетия). Явление радиоактивности послужило началом развития науки о ядрах, новых частицах и о взаимодействиях совсем другого ро­да — не гравитационных и не электрических. Все эти вопросы еще ждут своего разрешения.

Для уж очень строгих и образованных читателей (скажем, профессоров, которым случится читать эти строки) специально добавим: наше утверждение, что выражение (28.3) содержит все известное из электродинамики, не совсем точно. Существует во­прос, который так и не был разрешен к концу XIX столетия. Если попробовать вычислить поле, создаваемое всеми зарядами, включая и тот заряд, на который в свою очередь действует поле, то возникнут трудности при попытке определить, например, расстояние от заряда до него самого и последующей подстановке этой величины, равной нулю, в знаменатель. Как быть с той частью поля, которая создается зарядом и на него же действует, до сих пор не понятно. Оставим этот вопрос, загадка не раз­гадана до конца, и мы по возможности будем избегать го­ворить о ней.

§ 2. Излучение

Перейдем от общей картины мира к явлениям излучения. Прежде всего мы должны выбрать тот член в выражении (28.3), который спадает обратно пропорционально первой (а не второй!) степени расстояния. Оказывается, что этот член имеет столь простой вид, что если принять его в качестве закона поведения электрического поля, создаваемого движущимся зарядом на больших расстояниях, то можно излагать электродинамику и оптику на элементарном уровне. Мы временно примем этот за­кон без доказательства, а позже изучим его подробнее.

Первый член в правой части (28.3) явно обратно пропорцио­нален второй степени расстояния; легко показать, что и второй член, дающий поправку на запаздывание для первого, меняется таким же образом. Весь интересующий нас эффект заключен в третьем члене, и в общем он не так уж сложен. Этот член гово­рит нам следующее: посмотрите на заряд и заметьте направление единичного вектора (конец вектора скользит по поверхности единичной сферы). По мере движения заряда единичный вектор крутится, и его ускорение есть именно то, что нам нужно. Вот и все. Итак,

(28.5)

Формула (28.5) выражает закон излучения, потому что единст­венный член, который она содержит, спадает обратно пропорционально расстоянию и, следовательно, доминирует на больших расстояниях от заряда. (Часть, меняющаяся обратно пропорцио­нально квадрату расстояния, становится настолько малой, что не представляет интереса.)

Продвинемся несколько вперед и выясним смысл формулы (28.5). Пусть заряд движется произвольным образом и мы на­блюдаем его на некотором расстоянии. Представим на минуту, что заряд «светится» (хотя именно явление света мы и должны объяснить); итак, пусть заряд есть светящаяся белая точка. Мы видим движение этой точки. Но мы не можем точно определить, как она движется в данный момент, из-за упоминавшегося уже ранее запаздывания. Имеет смысл говорить только о том, как она двигалась в более ранний момент времени. Единичный век­тор er’ направлен к кажущемуся положению заряда. Конец вектора er’, естественно, описывает некую кривую, так что ускоре­ние имеет две составляющие. Одна из них — поперечная состав­ляющая, возникающая из-за движения конца вектора вверх и вниз, а другая — радиальная, или продольная, возникающая из-за вращения конца вектора по сфере. Легко показать, что вторая составляющая много меньше первой и изменяется обрат­но пропорционально квадрату r для очень больших r. В самом деле, если отодвигать источник все дальше и дальше от точки наблюдения, колебания вектора er' будут становиться все слабее (обратно пропорционально расстоянию), а продольная соста­вляющая ускорения будет убывать еще быстрее. Поэтому для практических целей достаточно спроектировать движение заряда на плоскость, находящуюся на единичном расстоянии. В результате мы приходим к следующему правилу: пусть мы наблюдаем движущийся заряд и все, что мы видим, запаздывает во времени, т. е. мы находимся в положении художника, кото­рый рисует пейзаж на полотне, стоящем от него на расстоянии единицы длины. Конечно, художник не учитывает тот факт, что скорость света конечна, а изображает мир таким, каким он его видит. Посмотрим, что он нарисует на этой картине. Мы увидим точку (изображение заряда), движущуюся по картине. Ускоре­ние этой точки пропорционально электрическому полю. Вот и все, что нам нужно.

1 ... 5 6 7 8 9 10 11 12 13 ... 27
На этой странице вы можете бесплатно читать книгу 3. Излучение. Волны. Кванты - Ричард Фейнман бесплатно.

Оставить комментарий