все, что запечатлено камерой: собак, кошек, автомобили, даже человеческие лица. Почти как Фрэнк Розенблатт сорока годами ранее, он также верил в то, что по мере продолжения этих исследований машины научатся слушать и говорить, и даже рассуждать, как человек. Но об этом не упоминали вслух. «Мы думали об этом, – признается он, – но почти не обсуждали». После того как столько лет ученые приписывали искусственному интеллекту то, чем он далеко не обладал, отношение к подобным заявлениям в научном сообществе изменилось. Теперь, если кто-то утверждал, что успешно движется к созданию ИИ, его просто не принимали всерьез. «Не стоит вслух говорить об этом, пока слова не подтверждены делом, – говорит Лекун. – Вот если ты создал систему и она работает, тогда ты можешь сказать: “Посмотрите, вот какие мы имеем результаты на такой-то базе данных” – да и все равно тебе никто не поверит. Даже когда у тебя есть все доказательства и ты демонстрируешь, как это работает, – даже тогда не поверят».
* * *
В октябре 1975 года в аббатстве Руайомон92, средневековом монастыре, расположенном к северу от Парижа, между американским лингвистом Ноамом Хомски и швейцарским психологом Жаном Пиаже состоялись дебаты, посвященные природе обучения. Пять лет спустя вышла в свет книга, подробно описывающая суть их спора93, и Ян Лекун прочитал ее, еще будучи студентом. На восемьдесят девятой странице книги упоминался «Перцептрон»94 как устройство, «способное формулировать простые гипотезы на основе регулярного поступления исходных данных», и Лекуна это зацепило; он сразу же влюбился в идею машины, способной учиться. Он был уверен, что способность к обучению неотделима от интеллекта. «Любое животное, имеющее мозг, способно учиться», – часто говорил он.
В то время мало кто из ученых уделял внимание нейронным сетям, а те, кто уделял, видели в них не искусственный интеллект, а лишь возможность распознавания паттернов, и Лекун носил в себе эту идею все те годы, пока учился в Высшей школе инженеров-электротехников и электронщиков. Большинство научных статей, которые он читал, были написаны по-английски японцами, потому что Япония в те годы была одним из немногих мест, где это научное движение еще сохранялось. Затем он обнаружил признаки этого движения в США. В 1985 году в Париже проходила конференция, посвященная новаторским и нестандартным подходам в области информатики, и Лекун там присутствовал. А еще там был Хинтон, выступивший с докладом о своей «машине Больцмана». Когда выступление закончилось, Лекун вышел вслед за докладчиком из зала, убежденный в том, что он один из очень немногих людей на Земле, которые придерживались тех же взглядов. К сожалению, в толкотне догнать Хинтона ему не удалось, но, как оказалось, Хинтон сам хотел познакомиться с Яном Лекуном. Он что-то слышал об этом молодом аспиранте от Терри Сейновски, который познакомился с Лекуном на одном из семинаров несколькими неделями ранее. Фамилия Яна выскользнула из памяти Хинтона, но когда он увидел статью Лекуна в программе конференции, то сразу понял, что это и есть он.
На следующий день они вместе позавтракали в арабском ресторане. Хотя Хинтон почти не говорил по-французски, а Лекун не очень хорошо знал английский, их общению это не помешало. Они ели кускус и обсуждали превратности судьбы коннекционизма. Лекуну казалось, что Хинтон понимал его с полуслова. «Я обнаружил, что мы говорили на одном языке», – вспоминает он. Когда два года спустя Лекун защищал диссертацию, темой которой была технология, сходная с алгоритмом обратного распространения ошибки, Хинтон прилетел в Париж, чтобы попасть на заседание ученого совета, хотя по-прежнему почти ничего не понимал по-французски. Обычно при чтении научных статей математические выкладки он пропускал, основное внимание уделяя тексту. Здесь же у него не было другого выбора, как сосредоточиться на математических расчетах Лекуна. Когда дело дошло до вопросов и ответов, договорились так, что Хинтон будет спрашивать по-английски, а Лекун будет отвечать по-французски. Все прошло отлично, если не считать того, что ответов Хинтон не понял.
После долгой «зимы» нейронные сети начали постепенно выбираться из своих нор. Пока Дин Померло работал над беспилотным автомобилем в Университете Карнеги – Меллона, Сейновски активно пиарил свой проект, получивший название «NETtalk»95. Используя устройство, способное генерировать звуки – что-то вроде синтезатора речи с голосом робота, которым пользовался парализованный вследствие нейродегенеративного заболевания Стивен Хокинг, – Сейновски создал нейронную сеть, умевшую читать вслух. Анализируя детские книжки с английскими словами и соответствующими фонемами (то есть как каждая буква произносится), сеть научилась самостоятельно произносить другие слова – которых не было в книжке. Она умела различать, когда сочетание букв «gh» читается как «f» (как в слове «enough») и когда «ti» произносится как «sh» (как в слове «nation»). Выступая с докладами на конференциях, Сейновски включал записи звуков, издаваемых устройством на разных стадиях процесса обучения. Сначала система что-то лепетала как младенец. Через полдня она уже научилось произносить узнаваемые слова. Неделю спустя она уже могла считать вслух. «Enough». «Nation». «Ghetto». «Tint». Эта система наглядно показывала, на что способна искусственная нейронная сеть и как она работает. Сейновски ездил со своим творением с одной научной конференции на другую – попутно продемонстрировав ее миллионам телезрителей в ток-шоу Today – и это способствовало активизации коннекционистских исследований по обе стороны Атлантики.
Защитив диссертацию, Лекун последовал в Торонто на годичную постдокторанскую стажировку. Он привез с собой из Франции два чемодана – один с одеждой, другой с персональным компьютером. С Хинтоном они хорошо ладили, хотя сферы интересов у них были достаточно разные. В то время как Хинтона влекло желание понять работу человеческого мозга, Лекун, инженер-электронщик по образованию, больше интересовался вычислительной техникой, математикой нейронных сетей и созданием искусственного интеллекта в самом широком смысле этого слова. В своей профессии он воодушевлялся философскими дебатами между Хомски и Пиаже. Еще его вдохновляли Hal 9000 и другие футуристические машины, описанные в фильме «Космическая одиссея 2001 года» Стэнли Кубрика, который он видел в ультрашироком формате в Париже, когда ему было девять лет от роду. Более сорока лет спустя, когда он возглавил одну из крупнейших в мире научно-исследовательских лабораторий, стены его кабинета по-прежнему украшали обрамленные в рамки кадры из этого фильма. На протяжении всей своей карьеры, изучая искусственные нейронные сети и другие алгоритмические методы, он также занимался разработкой компьютерных чипов и беспилотных вездеходов. «Я делал все, до чего могли дотянуться мои руки», – говорит он. В его работе погоня за ИИ переплетается с другими направлениями научных исследований, и все это складывается в порой даже чересчур амбициозные замыслы, нацеленные на создание машин,