Представьте себе на маленьком зеркальце три крохотные чёрные точки. Когда мы посмотрели на них в лупу, то увидели, что это мухи, вернее, мушки — таких маленьких я никогда не видел! Но что произошло дальше… Единичка чихнула, и три мушки мгновенно поднялись в воздух. Первая полетела прямо на восток, вторая взмыла вверх по какой-то замысловатой спирали, а третья принялась кружиться вокруг острова — ни дать ни взять живой спутник! Но самое главное — они летели с различными скоростями. Я уже хотел наброситься на Единичку, ведь это по её милости мушки сорвались с места. Но, оказывается, Единичка тут ни причём: так было задумано. Рядом с зеркалом висела табличка с таким текстом: «Вычислите, через сколько минут после старта три мухи снова окажутся в одной плоскости, если скорость первой мухи вдвое больше скорости второй и втрое больше скорости третьей». Вот так вопрос! Как же я могу вычислить, через сколько времени мухи окажутся в одной плоскости, если скорости их неизвестны? Видимо, тут дирекция музея что-то напутала" Правда, Единичка пыталась ответить на этот вопрос, но сказала такую нелепость, что мне и повторять неловко.
Мы двинулись к выходу. Тут нас ожидал сюрприз. Каждому посетившему Музей самообслуживания разрешалось самому взять на память любую из медалей, развешенных тут же, на доске. На этих медалях были изображения учёных. На каждой стороне разные. Скажем, с одной стороны Эвкли́д, а на обороте Лобаче́вский. Или: Птолеме́й и Копе́рник, Исаа́к Нью́тон и Альберт Эйнште́йн. Но почему эти пары поместили на одну медаль, не понимаю! Что за идея — объединить Эвклида с Лобачевским, Птолемея с Коперником или Ньютона с Эйнштейном? Может, у дирекции не хватило материала и она решила использовать, так сказать, оборотную сторону медали?
Но хуже всего то, что снять эти медали с доски было совершенно невозможно: они висели на разноцветных ленточках, прикреплённых к доске. Чтобы снять медаль, ленточку надо было разрезать. Правда, тут же на столе лежали ножницы. Но какие-то странные: они легко раскрывались, а соединить их снова не было никакой возможности. К счастью, Единичка нашла инструкцию, где говорилось, что ножницы следовало раскрыть на определённый угол, притом с абсолютной точностью! Этот угол должен быть меньше развёрнутого угла ровно в «пи» раз.
Ну, Единичка, конечно, стала расспрашивать, что значит в «пи» раз? В школе она этого ещё не проходила. Я разъяснил, что «пи» — это греческая буква, вроде нашего русского «пэ». Буквой «пи» принято обозначать угол в 180 градусов. А так как развёрнутый угол тоже равен ста восьмидесяти градусам, то и выходит, что 180, делённое на «пи» (то есть на 180), равно единице! Значит, половинки ножниц нужно раздвинуть точно на 1 градус! Я так и поступил, но ножницы не сработали, вероятно, испортились! Пришлось уйти безо всяких сувениров. Жаль!
Я уже взялся за ручку двери, но дверь оказалась запертой. На ней висел замок. А в него была засунута свёрнутая трубочкой бумажка. Единичка немедленно (она все делает немедленно) прочитала: «Дверь ведёт на Апори́йскую дорогу. И хоть длина дороги всего-навсего 1 километр, никто за 25 веков не смог пройти по ней до конца».
А на обороте было написано: «Ключ находится у сторожа, в городе Эле́е. Номер телефона: одна вторая. Вызвать Зено́на. Просят зря не беспокоить».
Что значит «зря не беспокоить»? И что это за сторож, который живёт в другом городе? Пришлось позвонить этому Зенону. И вот какой разговор у меня с ним произошёл.
— Товарищ Зенон, — спросил я, — почему это никто не смог одолеть один несчастный километр вашей Апорийской… или как она там называется, дороги?
— Ясно почему, — ответил Зенон. — Надеюсь, Магистр (подумайте, он сразу узнал меня по голосу!), вы согласитесь, что тому, кто хочет дойти до конца пути, никак не миновать его середины?
— Что за вопрос! — возмутился я. — Как же можно дойти до конца, не пройдя середины?!
— В том-то и беда, — вздохнул Зенон. — Ведь когда вы дойдёте до середины пути, у вас останется ещё полпути. А у этого полпути тоже есть своя середина. И только вы дойдёте и до этой середины, как перед вами появится новая середина — середина оставшейся четверти пути. И так всё время! Сколько бы вы ни шли, перед вами всегда будет оставаться отрезок пути, а у него своя середина. Но вы же сами согласились, что, не одолев середины, нельзя дойти до конца. Вот и выходит, что одолеть Апорий скую дорогу невозможно!
Я так разволновался от этих рассуждений Зенона, что не сумел их опровергнуть. А тут ещё нас разъединили. Ох уж эти автоматические телефонные станции!
Но что было дальше!.. Единичка вытащила из своего кармана гвоздь (прямо как Том Сойер!), поковыряла гвоздём в замке, и… замок открылся! Я ахнуть не успел, как она выбежала на «непроходимую» Апорийскую дорогу и через несколько минут закричала издалека: «Я здесь! На самом конце!»
Молодец девчонка! Пристыдила-таки этого заумника Зенона.
Нет, что ни говорите, а странный остров ОАЗИС! Загадок на нём действительно много, а вот софизмов… что-то я ни одного не приметил. Может быть, эти самые софизмы перекочевали на другой остров?
Единичка стала укладывать вещи, а я поспешил на берег океана, чтобы найти какой-нибудь подходящий транспорт.
О радость! В нескольких метрах от меня, выстроившись в шеренгу вдоль берега, покачивались на воде двенадцать пустых бочек. Выбирай любую и плыви по воле волн! Авось куда-нибудь да выплывешь! Больше всего мне понравилась ярко-красная бочка — она была четвёртой слева.
Прибежавшая на мой крик Единичка запрыгала от восторга.
— Поплывём в этой, восьмой, красной бочке! — закричала она.
— Не в восьмой, а в четвёртой, — поправил я. — Это четвёртая бочка красная.
— Четвёртая слева, но зато восьмая справа, — возразила Единичка.
Выходит, из двенадцати бочек мы с Единичкой выбрали одну и ту же. Через минуту вещи наши были на судне и… Но об этом уж в следующий раз.
СЕДЬМОЕ ЗАСЕДАНИЕ КРМ
началось без Пончика. Он вернулся к своим почтальонским обязанностям и отправился в Карликанию с письмом к Нуликовой маме-Восьмёрке.
— Конечно, волноваться обо мне маме не с чего, — сказал Нулик, — ведь я среди друзей! Но всё-таки не мешает написать ей, — она, наверное, так соскучилась…
На этом лирическая часть закончилась, и мы перешли к деловой.
— Как ты думаешь, Нулик, — спросила Таня, — если в фразе переставить слова, смысл её от этого изменится?
— Не думаю, — сказал Нулик. — «Я люблю мороженое» или «мороженое я люблю» — какая разница?
— Смысл, конечно, остался тот же, — согласилась Таня, — правда, несколько изменилась интонация. А если сказать «я не совсем понял правила деления» или «я совсем не понял правил деления» — это одно и то же?
— Что за экзамен? — возмутился Нулик.
— Не экзамен, а наглядный пример. Магистр спутал разность квадратов с квадратом разности двух чисел. В первом случае нужно сначала возвести каждое число в квадрат, а уж затем вычислить разность этих квадратов. Во втором — наоборот: надо сперва взять разность чисел, а уж потом возводить её в квадрат. А это совсем не одно и то же. Вот и Магистр, вместо того чтобы вычислить разность квадратов двух чисел — 500 и 498, вычислил квадрат их разности. Он вычел из первого числа второе, получил 2 и возвёл эту двойку в квадрат. Так у него в ответе и получилось 4.
— Понял! — закричал Нулик. — Надо было сперва возвести в квадрат 500, потом 498, а затем из одного квадрата вычесть другой. Только… не так это легко возвести в квадрат 498.
— А этого и не требуется, — сказала Таня. — Задача решается гораздо проще. Сперва сложим оба числа. Получим 998. Затем вычтем из одного числа другое. Получится 2. А теперь перемножим оба результата. Ответ — 1996. Просто и красиво.
— А главное, никакой затраты умственного труда! — восхитился Нулик и тут же принялся проверять Танино правило.
В общем, Нулик способный ребёнок, только очень уж самоуверенный…
— Ну и неуч этот Магистр! — негодовал он. — Не знать такого простого правила! А Единичка — молодец: сумела поддеть его на крючок! Я думаю, в музее она чихнула нарочно, чтобы мухи разлетелись.
— Вот мы сейчас к этим мухам и перейдём, — сказала Таня.
— Ну; здесь уж вам никакие правила не помогут! — позлорадствовал Нулик. — Раз три мухи разлетелись кто куда горазд, да ещё с разными скоростями, тут даже академик не скажет, когда они снова окажутся в одной плоскости.
— Хотя я и не совсем академик, — прищурился Сева, — но знаю всё-таки, что куда бы три мухи ни улетели, они всегда, каждое мгновение будут оставаться в одной общей плоскости. Это же основа геометрии!
— Интересно! — хихикнул президент. — Выходит, геометрия — наука о мухах.