– Вы должны понимать, – говорил ему последний, – что подвергаете себя серьезному риску. Если вы не дойдете на этом методе до конца, то останетесь почти ни с чем. Промежуточные результаты о делимости, хотя и очень красивые, сейчас уже мало кого интересуют. Если вы не убедите людей, что этим методом можно доказывать важные теоремы, такие, как гипотеза Гольдбаха, то сам по себе метод будет немногого стоить.
Петрос, как всегда, ответил, что осознает риск.
– И все же что-то говорит мне, что вы, быть может, на правильном пути, – обнадежил его Литлвуд.
– Да, – буркнул Харди, – только поторопитесь, Папахристос, пока у вас ум не начал распадаться, как у меня. Помните, в ваши годы Рамануджан был уже пять лет как мертв.
Первый доклад был сделан в начале осеннего семестра, и за готическими окнами кружились желтые листья. В последовавшие зимние месяцы работа дяди двигалась, как никогда раньше. Это было время, когда он стал применять также метод, именуемый им «геометрическим».
Он начал с представления всех составных (т.е. не простых) чисел в виде точек в прямоугольниках, где наименьший простой делитель был шириной, а частное от деления числа на него – высотой. Например, число 15 представлялось в виде прямоугольника 3 х 5, 25 – как 5 х 5, 35 – как 5x7:
С помощью такого метода все четные числа представлялись в виде пар столбцов, как 2 х 2, 2 х 3, 2 х 4, 2 х 5 и т.д.
Напротив, простые числа, как не имеющие целых делителей, представлялись в виде одной строки, например 5, 7, 11:
Петрос использовал свою геометрическую интуицию для получения теоретико-числовых выводов.
После рождественских каникул он представил свой первый результат. Поскольку, однако, он вместо карандаша и бумаги выкладывал узоры из бобов на полу кабинета Харди, его новый подход вызвал насмешливые дифирамбы Литлвуда. Хотя более молодой член содружества и признал, что «знаменитый метод бобов Папахристоса» до некоторой степени полезен, Харди откровенно был раздражен.
– Что вы придумали с этими бобами? – спросил он. – Между элементарным и инфантильным разница огромная… И не забывайте, Папахристос, эта чертова проблема трудна – а то бы Гольдбах сам ее решил.
Петрос тем не менее верил в свою интуицию, а реакцию Харди отнес на счет «интеллектуального запора от старости» (его собственные слова).
– Великие истины жизни просты, – сказал он Литлвуду за чаем. Литлвуд возражал, вспоминал крайне сложное доказательство теоремы Адамара и Валле-Пуссена о распределении простых чисел. А потом предложил:
– Старина, а что вы скажете насчет того, чтобы заняться настоящей математикой? Я тут работаю над десятой проблемой Гильберта – разрешимость диофантовых уравнений. У меня есть идея, которую хочется проверить, но боюсь, мне нужна помощь с алгеброй. Как вы насчет помочь?
Но Литлвуду пришлось искать помощь с алгеброй в другом месте. Как бы ни был Петрос польщен верой в него коллеги, он решительно отказался. Он слишком погрузился в проблему Гольдбаха, сказал он, врос в нее, чтобы плодотворно работать над чем бы то ни было другим.
Его вера, подкрепленная упрямой интуицией, в «инфантильный» (как сказал Харди) геометрический подход, была так сильна, что впервые со времени начала работы над Проблемой он чувствовал, что находится на волосок от решения. Были даже восторженные минуты в один солнечный январский день, когда ненадолго возникла иллюзия, что он его нашел – но, увы, более трезвый анализ обнаружил небольшую, но решающую ошибку.
(Здесь, дорогой читатель, я должен сознаться: в этот момент дядиного рассказа я невольно ощутил прилив мстительной радости. Я вспомнил то лето в Пилосе, когда тоже какое-то время думал, что решил проблему Гольдбаха – хотя тогда и не знал ее названия.)
Несмотря на глубокий оптимизм, приступы сомнения в себе, иногда на грани отчаяния (особенно после пренебрежительного отзыва Харди о геометрическом методе), стали сильны, как никогда. Дядя боролся с ними, убеждая себя, что это страдания, предшествующие великому триумфу, родовые муки великого открытия. Ведь и ночь темнее всего перед рассветом. Петрос был уверен, что более чем готов для финального рывка. Решительный приступ сосредоточенных усилий – только это и нужно, чтобы вознаградить его последним блестящим озарением.
И потом – славный финиш…
Провозвестие сдачи Петроса Папахристоса, прекращения его усилий решить проблему Гольдбаха пришло во сне, который привиделся ему в Кембридже вскоре после Рождества, – знамение, все значение которого он не сразу постиг.
Как и многие математики, долго работающие над основными арифметическими проблемами, Петрос «подружился с натуральными числами», то есть приобрел глубокое знание пристрастий, капризов и странностей многих конкретных чисел. Несколько примеров: «друг натуральных чисел» сразу распознает 199, 457 или 1009 как простые числа. Число 220 немедленно ассоциируется с числом 284, поскольку эта пара связана необычным соотношением (сумма целых делителей каждого из них равна другому). Число 256 он тут же прочтет как 2 в восьмой степени, вслед за которым идет число, представляющее большой исторический интерес, поскольку 257 может быть выражено в виде
а существовала знаменитая гипотеза, что числа вида
являются простыми [22].
Первым известным моему дяде человеком, у которого это качество присутствовало, причем в крайней степени, был Сриниваса Рамануджан. Петрос видел это много раз и даже рассказал мне такую историю [23]:
Однажды в 1918 году они с Харди навещали Рамануджана в санатории. Чтобы сломать лед, Харди сообщил, что номер такси, которое их сюда привезло, был 1729 – число «довольно скучное», как ему показалось. Но Рамануджан, задумавшись лишь на мгновение, энергично возразил: «Нет, Харди, вы неправы! Это очень интересное число – оно наименьшее, которое может быть представлено в виде суммы двух кубов двумя способами!» [24]
За годы, которые Петрос работал над Проблемой с помощью элементарного подхода, его собственная дружба с числами развилась до исключительных пределов. Числа переставали быть неодушевленными сущностями; они почти оживали, у каждого была своя личность. Это – вместе с уверенностью, что решение где-то существует – поддерживало его в самые суровые времена: работая с натуральными числами, он – я цитирую – «чувствовал себя среди друзей».
Эта близость вызывала вхождение некоторых чисел в дядины сны. Из безымянной и безликой массы натуральных чисел, громоздившейся ранее в ночных спектаклях, стали выделяться отдельные актеры, даже главные действующие лица. Например, число 65 являлось почему-то в виде джентльмена из Сити, в котелке и с зонтиком, и с ним всегда один из его простых делителей – 13, гоблиноподобное создание, гибкое и быстрое как молния. Число 333 было жирным лентяем, ворующим куски изо рта своих братьев 222 и 111, а число 8191, известное как «простое число Мерсенна», неизменно имело внешность парижского гамена, вплоть до прилипшей к губе сигареты «голуаз».
Иногда видения были приятны и забавны, иногда безразличны, иногда же назойливы и неприятны. Но была еще одна категория арифметических снов, которые можно было бы назвать только кошмарными, если не из-за ужаса или муки, то из-за глубокой, бездонной тоски. Некоторые четные числа являлись в виде пары близнецов-двойняшек (напомним, что четное число всегда представимо в виде 2k, то есть суммы двух равных целых чисел). Эти близнецы смотрели на дядю не отрываясь, без выражения на неподвижных лицах. Но в глазах их была огромная, хоть и немая боль, боль отчаяния. Если бы они могли говорить, слова были бы такими: «Приди, умоляем тебя! Скорее освободи нас!»
В этих печальных видениях была одна вариация, которая пришла к нему как-то ночью в конце января 1933 года. Это и был тот сон, который дядя ретроспективно назвал «герольдом поражения».
Ему приснилось число 2100 (2 в сотой степени – число огромное) в виде двух одинаковых веснушчатых темноглазых красавиц, и они глядели прямо на него. Но теперь в этих глазах была не просто грусть, как раньше в глазах Четных, там была злость, даже ненависть. Они смотрели на него долго-долго (уже одного этого было бы достаточно, чтобы назвать сон кошмаром), и потом одна из них мотнула головой из стороны в сторону движением коротким и резким. Рот ее исказился в злобной ухмылке – это была злоба отвергнутой любви.
– Ты никогда до нас не доберешься, – прошипела она.
От этих слов Петрос вскочил с кровати в холодном поту. Слова 299 (то есть половины от 2100) могли значить только одно: ему не суждено решить Проблему. Конечно, он не был суеверен, как старуха, слепо верящая в приметы. Но глубокое истощение от многих бесплодных лет начало брать свое. Нервы были уже не так крепки, как раньше, и сон его необычайно расстроил.