Пушки без отката
Мы видели, что сила отдачи у артиллерийских орудий весьма значительна. Удержать орудие на месте невозможно, а чтобы удержать станок орудия, нужны тормозы и врытый в землю сошник.
Ну, а как же быть на воздушном корабле? Ведь, там сошник врыть некуда, да и корабль так неустойчив, что может перевернуться при выстреле. Отдача делает невозможным вооружение воздушных кораблей пушками. Но так как на войне очень важно было бы поставить на аэроплане орудие, явился ряд проектов пушек без отката.
На первый взгляд задача кажется нерешимой. Как можно избавиться от отката, раз отдача — неизбежное явление при выстреле? Оказывается, можно избавиться не только от отката, но и от отдачи.
Один из таких остроумных проектов осуществлен на практике[6].
Изобретатель решил вопрос очень просто. Пушка его (рис. 6) стреляет сразу в две стороны!
Рис. 6. Общий вид пушки без отката; 1) ствол для боевого снаряда; 2) ствол для фальшивого снаряда. Пушка открыта для заряжания.
У пушки как бы два ствола, составляющиеся вместе. В каждый из них вкладывают снаряд и заряд; но так как заряды соприкасаются, можно считать их за один. При выстреле пороховые газы выбрасывают оба снаряда, и, значит, естественно, отдачи нет. Чтобы второй снаряд не причинил вреда своим войскам его делают из мелкой дроби, спрессованной, вязкой массой (вазелин). Немедленно по вылете из канала ствола этот «фальшивый» снаряд разлетается (распыляется). Очевидно, на воздушном корабле установка такого орудия вполне возможна (рис. 7).
Рис. 7. Пушка без отката на аэроплане. Поверх ствола пушки прикреплен пулемет.
Неудобства ее лишь в большом сравнительно весе зарядов и снарядов, которых нужно иметь двойное количество (фальшивые снаряды имеют тот же вес, что и настоящие). Зато общий вес пушки чрезвычайно мал по сравнению с обычными орудиями на станках с противооткатными приспособлениями.
Кто дальше бросит камень
Пробовали ли вы бросать камни или литой мяч для лапты? Если пробовали, то наверное заметили, что один раз камень (мяч) летит дальше, а другой раз ближе. Также заметили вы, вероятно, что некоторые из ваших друзей бросают почти всегда дальше вас, а другие ближе. Отчего это зависит? В чем секрет уменья бросать камни дальше других? На этот вопрос физика дает исчерпывающий ответ. Вот на рис. 8 показано, как летит камень.
Рис. 8. Искусство бросать камни: полет камня в безвоздушном пространстве при скорости броска 50 м в секунду.
Вы видите, что он описывает в воздухе дугу, которую, как и всякую линию движения тела, называют «траекторией». Если бы не было силы тяжести, т. е. камень не притягивался бы к земле, он полетел бы прямо по направлению броска. Но так как камень все время притягивается к земле, он не только летит вперед, но одновременно падает. Скорость его падения всегда одинакова и не зависит ни от уменья бросать, ни от веса камня. В первую секунду камень, падая, опустится вниз на 5 метров[7], во вторую секунду еще на 15 метров, в третью еще на 25 м и т. д. Значит, за первую секунду полета камень «упадет» на 5 метров, за вторую секунду на 20 метров (5+15), за третью — на 45 метров (20 + 25) и т. д. (см. рис. 8). Вот теперь и сравним, как далеко упадут камни, брошенные с разной силой и под разными углами к горизонту. Если сила броска будет больше, то, значит, и скорость, с какой он будет двигаться, также окажется больше. Влияние воздуха на летящий камень мы пока в расчет не будем принимать. Из. рисунков 8 и 9 ясно видно, что быстрее летящий камень, пролетая каждую секунду большее расстояние, упадет дальше, чем брошенный под тем же углом, но с меньшей скоростью.
Рис. 9. Полет камня в безвоздушном пространстве при скорости 25 м в секунду.
А теперь положим, что камни брошены с равной, скоростью, но под разными углами к горизонту (рис. 10).
Рис. 10. Полет камня в безвоздушном пространстве при различных углах бросания.
Тут, очевидно, дело не так просто. Камень, брошенный прямо вверх, т. е. под углом 90°, упадет на то же место, значит, дальность его полета — ноль. Камни, брошенные близко к этому углу, очевидно, далеко не полетят. Выходит, что есть какой-то угол бросания — больше 0°, но меньше 90°. Опыт и теория показывают, что таким углом в безвоздушном пространстве является угол, равный 45°. В воздухе наивыгоднейший угол броска получается несколько меньше, ок. 42–43°.
Итак, дальше упадет тот камень, который брошен с большей силой (а значит, и с большей скоростью) и направление броска которого ближе к 42–43°.
Проверьте это в поле, подобрав камни равного веса и, примерно, одинаковой формы, и вы убедитесь в правильности этого вывода. Это же правило вполне применимо к пулям и снарядам. Поэтому, чтобы дальше бросить пулю или снаряд, стараются сообщить им побольше начальную скорость, что достигается увеличением заряда пороха. Увеличивают также и угол бросания, но здесь чисто военные причины заставляют часто отказываться от наивыгоднейшего угла. Для примера отметим хотя бы необходимость пробить вертикальную стенку. Если снаряд будет брошен под большим углом, он упадет сверху и стенку не пробьет. А если его бросить «настильно», т. е. под малым углом, то при достаточной силе удара стенка окажется пробитой.
Интересно отметить, каких пределов достигла здесь военная техника. Очевидно, наивыгоднейший угол бросания изменить нельзя, поэтому тут как раньше, так и теперь у дальнобойных орудий, в зависимости от назначения их, стремятся лишь приблизиться к этому углу наклона. Что же касается силы броска, от которой зависит скорость полета снарядов, то с каждым годом техника дает нам новые достижения в этой области. Двадцать лет тому назад скорость полета снарядов не превышала 800 метров в секунду. Теперь же ряд орудий дает начальную скорость снарядов значительно больше 1 000 метров в секунду, и у некоторых образцов она достигает 1 500—1 700 метров в секунду! Чтобы понять как велики эти скорости, сравним их со скоростями других известных нам движений (рис. 11).
Рис. 11. В одну секунду проходят…
Однако не следует думать, что достижения здесь беспредельны. Уже сейчас для получения таких громадных скоростей в орудия кладут заряды пороха до 200 кг. Взрыв таких количеств пороха требует громадной прочности стволов, что достигается их утолщением.
Но опыт показал, что тут тоже есть предел, дальше которого утолщение ствола не повышает уже его прочность. Этим пока и ограничены дальнейшие увеличения скоростей полета снарядов, а значит, и дальности их броска.
Мешает ли воздух двигаться
При медленных движениях (пешеход, экипаж) присутствие воздуха почти незаметно, и влияние его на скорость движения тел ничтожно. При всяком же быстром движении (велосипед, поезд, автомобиль, аэроплан) воздух уже заметно тормозит движение, так как вокруг двигающегося тела образуются препятствующие передвижению тел вихри. Вопрос этот приобрел особенно большое значение с развитием авиации, и в настоящее время изучению его уделяют большое внимание ученые всех стран.
Проверить опытом влияние воздуха на движение тел совсем нетрудно. Дайте падать двум одинаковым кускам картона с одной высоты, но в разных положениях: один плашмя, другой ребром. Даже при небольшой высоте заметно будет, что картон ребром упадет скорее, чем плашмя.
Другой пример: бросьте лист бумаги. Далеко ли он упадет? Теперь сожмите лист в комочек и снова бросьте. Он упадет гораздо дальше. Влияние воздуха в обоих опытах очевидно и зависит от площади и формы двигающихся тел.
Насколько все это имеет значение на практике, можно видеть из следующих примеров.
Круглая шрапнельная пуля, брошенная с аэроплана вниз, сначала, как все падающие тела, двигается ускоренно[8], но в некоторый момент своего падения скорость ее перестанет возрастать, и она будет падать равномерно. Это наступит тогда, когда сила тяжести окажется равной силе сопротивления воздуха. Сила тяжести остается во все время падения пули постоянной, а сопротивление воздуха увеличивается с увеличением скорости движения пули. Поэтому настает такой момент, когда силы эти сравняются. В результате, круглая пуля, брошенная с любой высоты, доходит до земли с небольшой сравнительно скоростью и благодаря этому почти безвредна. Ударившись о мягкую шапку, пуля обычно не в состоянии пробить даже ее толщину.
Другое дело, если с аэроплана бросить острую стрелу. Так как стрела легко разрезает воздух, сопротивление его окажется ничтожным, и скорость стрелы у земли может дойти до нескольких сотен метров в секунду. Это делает стрелы, брошенные с аэроплана, очень опасными, так как они способны пробить насквозь десяток дюймовых досок, а попадая в человека, пробивают его от плеча до пятки и зарываются еще в землю на несколько сантиметров. Все сказанное указывает на один из способов борьбы с сопротивлением воздуха. Способ этот заключается в придании двигающимся телам «удобообтекаемой» формы. Опытом установлено, что такой формой при небольших скоростях является форма капли воды (рис. 12).