"Выбей из круга!"
Открытая еще до революции, 8-я школа не имела ни спортивных площадок, ни спортивного зала, ни актового, ни цветников, ни своего земельного участка. С трех сторон ее окружали частные домостроения, а с четвертой проходила булыжная дорога. Был у школы лишь крохотный дворик с глухими стенами по периметру, поэтично называемый римским. Не развернуться, не разбежаться, но зато мяч можно было швырять во все стороны без опасений и оглядки: стену не прошибешь и через два этажа не перебросишь. Десятиклассник, поднатужившись, может быть, и смог бы, да десятиклассников-то у нас не было: старший класс - седьмой.
И вот в этих условиях идеальной с точки зрения физического развития ребят оказалась простая, давно уже известная игра. На земле вычерчивается круг диаметром 5-6 метров, 10 человек становятся в круг, а еще 10 - за его пределами. Ударами волейбольного мяча надо выбить из круга всех десятерых. Игра так и называется - "Выбей из круга!".
Несколько условий игры.
- Игрок, который находится внутри круга, может поймать летящий мяч, но тут же должен возвратить его одному из тех, кто находится вне круга.
Правило "запаса" не действует, т. е. игрок, поймавший мяч, лишается права остаться в круге после пропущенного удара или вызвать в круг ранее выбывшего из игры товарища. Это позволяет сделать игру более динамичной и быстротечной.
- Мяч, отскочивший от земли, ловить запрещается.
- Игрок, находящийся внутри круга, считается выбывшим из игры, если наступит на черту круга или заступит за его пределы.
- Игра начинается по команде судьи. Одновременно включается секундомер. Когда выбивается из круга последний игрок, секундомер останавливается.
- После завершения первого тура игры (когда выбыли все находящиеся в круге) команды меняются местами.
- Побеждает команда, которая дольше смогла продержаться внутри круга.
Чемпионат школы проводился по круговой системе, результаты заносились в таблицу, вывешенную в коридоре первого этажа. Вероятно, не стоит рассказывать об атмосфере, которая царила в дни состязаний, о толпах болельщиков, страстно реагировавших на каждый меткий удар и на каждый удачный финт игрока, находящегося внутри круга.
Очень скоро выделились асы, мастера экстракласса. Их игру отличали высокие прыжки, неожиданные падения, обманные движения корпуса, мгновенная реакция на самый быстрый и резкий бросок мяча. На игровой площадке не имели ни малейшего значения только что полученные оценки по математике, физике или иностранному языку. Здесь царили другие законы отношений и поклонений.
Сейчас уже не вспомнить, кому первому пришла в голову шальная мысль вызвать на соревнование старшеклассников соседней средней школы No 6, но вызов был милостиво принят, условия согласованы, день встречи назначен. И грянул бой. В считанные секунды выбивали наши ребята из круга команду самонадеянных старшеклассников (сборная VIII-X классов). 6-я пыталась несколько раз взять реванш, но превосходство тренированных "малышей" было неоспоримым. Разрыв во времени исчислялся уже не секундами, а минутами. "Римский дворик" задыхался от смеха и торжества.
С тех пор прошло больше 30 лет, но и сегодня инженеры, исследователи, кандидаты наук, генеральные директора спортивных комплексов и... пенсионеры при встречах с волнением вспоминают счастливые дни учебы в маленькой семилетней школе No 8, сумевшей дать им в те тяжелые времена нравственную и физическую закалку, запас оптимизма на всю оставшуюся жизнь.
На подступах к новой методике
Поиск новых методических приемов, начатый еще в 1952 г., был продолжен на уровне эксперимента в 1953-1955 гг., когда в распоряжении автора были уже не отдельные классы, а полнокомплектная школа - неполная средняя No 8 Донецка. Но ни 1952-й, ни 1955-й год нельзя считать отправными вехами работы на новой методической основе, тем более временем рождения новой системы обучения. И вот почему.
Методический прием - это целенаправленное педагогическое действие, обеспечивающее решение той или иной воспитательно-учебной задачи. Совокупность методических приемов, неизбежно приводящих к планируемому результату, может быть определена как метод. Объединение методов образует методику. Примерами могут быть и методика математики, и методика географии, и методика химии, и многие другие методики. Интеграцию методик, основанных на научных концепциях и успешно решающих становые воспитательно-образовательные задачи, следует считать системой обучения.
В 1955 г. никакой системы обучения не было. Более того, располагая множеством методических приемов и методов, я был убежден, что все они применимы к двум-трем школьным курсам и эффективны только "в руках автора".
Переломным стал 1956 год, когда значительно более высокие результаты (по сравнению с обычными) были получены на нескольких учебных параллелях во всех экспериментальных классах от V до X по таким учебным дисциплинам, как математика, физика, астрономия и автодело.
В последующие 2-3 года совершенно отчетливо стали просматриваться зоны переноса новых методов обучения на географию, химию, биологию и другие учебные предметы. Экспериментальная работа обрела перспективу, общую стратегию и тактику.
И все время рядом с поиском новых методических приемов и методов шли самые разнообразные игры и состязания. На первый план встала забота о здоровье ребят, поддержании высокого рабочего тонуса, бодрого, оптимистического настроя. Незаменимым помощником всегда и во всем был спорт. Ломались самодельные городошные биты, на загородных зеленых лужайках гоняли "змейку", в игровой комнате гремели пластмассовые шары самодельного настольного футбола, вечерами бегали в лозняке за неуловимыми "светлячками", а на переменах и после уроков - шашки. Начали с русских. Освоили. Переключились на стоклеточные. Понравилось. После двух месяцев непрерывных турниров более 60 человек уже имели пятую спортивную категорию, а организатор состязаний - спортивную категорию судьи по шахматам и шашкам.
Эта категория давала право проводить турниры более высокого классификационного уровня. Все разрядники были разбиты на три группы (две группы мальчиков и одна группа девочек), и началась борьба за получение четвертого спортивного разряда. Заметим сразу, что это не так просто набрать 67% очков среди тех, кто оказался лучшим в первых турнирах. Поутихли разговоры, почти исчезли "зевки" - отстаивали престиж. В трудных позициях защищались цепко, упорно, изобретательно. В этом не было ничего необычного. Удивляло другое.
В состязаниях по стоклеточным шашкам, требующих предельно напряженного внимания, глубокого анализа и сложных расчетов вариантов, на первых местах оказались слабые ученики. Как это объяснить? Возможно, игровые ситуации включают в действие какие-то скрытые резервы мышления. Предположение фантастическое, но проверить его необходимо. С этой целью проводится новая серия экспериментальных исследований. На уроках и после них физико-математические турниры (ФМТ). Шутливые, задорные, чаще всего скоротечные (реже - затяжные), они включали в себя разнообразные головоломки (особым успехом пользовались самоделки, выполненные из проволоки диаметром 4 мм, которую ни согнуть, ни разогнуть было невозможно, и потому ребята часто брали их домой - решали вместе с родителями), задачи по начальному моделированию, логические задачи на устойчивость внимания, ребусы, лабиринты, что не требовало предварительной подготовки и развитых вычислительных навыков. Для победы в такого рода турнирах нужны были только смекалка, упорство и поисковая дерзость. И снова невероятное: побеждали вчерашние тихони, аккредитованные "середнячки" и общепризнанные тугодумы.
В течение многих лет. наблюдения и исследования проводились и в средних, и в старших классах, и в массовой, и в вечерней школе рабочей молодежи. Результаты совершенно определенно говорили об одном и том же: природная одаренность сплошь и рядом никак не соотносилась со школьными успехами, отраженными в классных журналах и ведомостях. А однажды...
Несколько уроков подряд очень сложная проволочная головоломка переходила из рук в руки. За ее решение брались самые лучшие ученики, но безуспешно. И вот на одной из перемен несколько минут присматривавшийся к проволочным переплетениям Андрюша Сучков, один из самых слабых учеников класса, вдруг взял в руки головоломку и тотчас же разъединил ее детали, продемонстрировав тем самым великолепное пространственное воображение. Ведь весь процесс разъединения он представил мысленно! После секундного оцепенения одноклассники куда как более уважительно посмотрели на Андрея.
Итак, путь к развитию познавательной активности был нащупан. Но, возможно, есть способ стимулирования процессов восприятия и запоминания? Снова задача, которую нужно во что бы то ни стало одолеть. Ведь без освоения, например, математической азбуки - теорем, определений, законов действий, вычислительной техники - не постигнуть саму математику. Да и вообще любая творческая деятельность возможна только на базе диалектически усвоенных глубоких и прочных знаний.