С переводом и комментированием трудов Архимеда связано развитие геометрической статики в странах Ближнего и Среднего Востока. Целый ряд трактатов посвящен теории весомого рычага и теории взвешивания. Значительное развитие получило и кинематическое направление античной статики, восходящее к «Механическим проблемам» псевдо-Аристотеля. В частности, влияние «Механических проблем» сказалось на получившем широкое распространение в средневековой Европе трактате «О корастуне» Сабита ибн-Корры.
В то же время большое значение на средневековом Востоке имела и ремесленная традиция. Содержанием многих специальных трактатов и специальных разделов восточных энциклопедий являются правила действия «простых машин», устройств для поднятия тяжестей, воды для поливки полей и т. д.
Характерной особенностью средневековой европейской механики является то, что большинство ее проблем рассматривалось не столько в механическом, сколько в общефилософском плане. Университетская наука, которая занималась этими проблемами, была, как правило, совершенно оторвана от технической практики.
Теоретические исследования в области статики преимущественно представляли собой дальнейшее развитие кинематического направления, восходящего к «Механическим проблемам» (трактаты «О тяжестях» Иордана Неморария и его школы).
Что касается традиции, связанной с геометрической статикой и гидростатикой Архимеда, то она не получила почти никакого развития и возродилась по-настоящему лишь в XVI в.
Астрономическое направление кинематических исследований в средневековой Европе почти не разрабатывалось.
Исследования в области кинематики, наиболее крупные из которых принадлежат Герарду Брюссельскому и родоначальнику Мертонской школы в Кембридже Томасу Брадвардину, были чисто умозрительными. Зачатки представлений о фундаментальных понятиях кинематики, таких, как скорость и ускорение неравномерного движения, появляются в XIV в. Их развитие связано с учением о «широтах форм», или «конфигурации качеств», истоки которого восходят к логико-философским спорам о понятии формы. Это учение, будучи вполне средневековым по своему духу и методам, оказалось практически бесплодным, несмотря на то что содержало ряд моментов, получивших развитие в математике переменных величин и на ранних этапах классической механики.
В поисках ответа на вопрос о сущности и источнике движения, причине его продолжения и механизме его передачи ученые средневековой Европы пришли к теории «импетуса», наиболее четко сформулированной Жаном Буриданом и применявшейся при изучении падения тела, его движения в пустоте и движения брошенного тела.
Для средневековой механики характерно дальнейшее углубление пропасти между теоретической и ремесленной традициями. Все, что в какой-то мере связано с ремесленной традицией, становится достоянием техники, к которой представители университетской науки относились с пренебрежением.
Таковы те результаты, с которыми механика вступила в эпоху Возрождения.
Наступление нового периода ознаменовано прежде всего новым отношением к механике[8], которая рассматривается как «благороднейшее из искусств, сочетающее с «благородством» величайшую пользу в житейских делах»{66}
Тенденция к возвышению прикладной механики заметна в посвящении Анри Монантейля к изданию «Механических проблем». Обращаясь к королю Генриху IV, он просит не презирать механику как нечто «неблагородное», ибо «наш мир есть машина, и притом машина величайшая, эффективнейшая, прочнейшая, прекраснейшая»{67}.
Когда Леонардо да Винчи говорит, что «механика — рай математических наук, ибо посредством нее достигают математического плода»{68}, то он имеет в виду техническую деятельность, которая реализует на практике теоретические положения «математических наук», под которыми он понимает и собственно математику, и физику, и астрономию.
Рассмотрим основные достижения механики Возрождения (в современном ее понимании), в формирование которой внесли свой вклад такие крупнейшие ученые, как Николай Кузанский, Леонардо да Винчи, Стевин, Коперник, Тарталья, Бенедетти, Кардано, Кеплер и др.
СТАТИКА
Существуют две точки зрения, в соответствии с которыми трактуется вопрос о путях формирования статики эпохи Возрождения.
Согласно одной из них, которой придерживался П. Дюэм, можно говорить о прямой преемственности между средневековой школой Иордана, разрабатывавшей кинематический вариант статики, восходящей к «Механическим проблемам», и статикой таких представителей Возрождения, как Леонардо да Винчи и Джироламо Кардано.
Сторонники другой точки зрения считают, что о такой преемственности говорить нельзя и что трактаты «О тяжестях» уже к XIV в. полностью потеряли свое значение. Однако вряд ли можно согласиться с последней точкой зрения. Известно, что в XV—XVI вв. эти трактаты продолжали переписывать и комментировать, а в XVI в. были дважды изданы трактаты самого Иордана.
Влияние школы Иордана, в частности работ итальянского ее представителя XVI в. Блазиуса из Пармы, можно проследить в опубликованных посмертно работах Леонардо да Винчи: «Трактате о живописи», «О движении и измерении воды» и целом ряде заметок.
Прежде всего Леонардо, как и его предшественники, обращается к закону равновесия рычага, который формулирует следующим образом: «Ту же пропорцию, которая существует между длиной рычага и противорычага, найдешь между величиной их весов и медленностью движения и в величине пути, проходимого каждым из их концов, когда они достигнут постоянной высоты своей точки опоры»{69}.
Этот закон формулируется на основании целой серии экспериментов, которые рассматриваются как промежуточная стадия работы, за которой следует теоретическое обоснование. Леонардо проводит его исходя из понятия «тяжести соответственно положению» школы Иордана[9]. В смысле строгости и логической стройности доказательство Леонардо значительно уступает формулировкам его предшественников; как и все подобные рассуждения, оно отражает свойственный ему инженерный подход к рассматриваемым явлениям. Его обоснование конкретнее физически и свидетельствует о реальном обращении с реальным рычагом. С помощью сформулированного правила Леонардо решает задачи как для линейного, так и для ступенчатого рычага.
ЛЕОНАРДО ДА ВИНЧИ (1452-1519)
Итальянский художник и ученый эпохи Возрождения, великий гуманист. Родился в г. Винчи. Работал во Флоренции, Милане, Риме; умер во Франции. Леонардо да Винчи был не только художником, но и математиком, механиком, физиком и инженером, которому обязаны важными открытиями самые разнообразные отрасли науки и техники
В более поздних заметках он связывает правило рычага с понятием центра тяжести тела или системы тел, обнаруживая глубокое знакомство с архимедовской теорией равновесия плоских фигур.
Однако Леонардо усвоил лишь общую идею аргументации Архимеда, отбросив саму суть его математического метода. Математику же, без которой он, как и большинство представителей науки Возрождения, считал недостоверным всякое знание, понимает весьма узко: для него это лишь возможность численной проверки какого-либо утверждения; математической он считал такую формулировку, которая устанавливает числовую зависимость между несколькими величинами, обычно в виде пропорции.
Как практик он подходит и к теории весомого рычага.
«Наука о тяжестях, — говорит он, — вводима в заблуждение своей практикой, которая во многих частях не находится в согласии с этой наукой, причем и невозможно привести ее к согласию. И это происходит от осей вращения весов, благодаря которым создается наука об этих тяжестях. Эти оси, по мнению древних философов, имеют природу математической линии и в некоторых случаях являются математическими точками — точками и линиями, которые бестелесны; практика же полагает их телесными»{70}.[10]
Что касается конкретных задач на весомый рычаг, то Леонардо интересовали главным образом две из них. Первая, более простая, — задача о нахождении веса груза,который надо подвесить на меньшем плече весомого рычага (весов), чтобы уравновесить вес большего плеча, не имеющего груза; вторая, более сложная, — нахождение условия равновесия такого рычага, оба неравновесных плеча которого нагружены. Однако Леонардо не смог сформулировать общее правило равновесия такого рычага, хотя и учитывал вес коромысла балансированием его.
Следует отметить введенное им понятие «потенциального» плеча, под которым Леонардо понимал величину перпендикуляра, опущенного из точки опоры на направление силы. Эти представления можно с известной степенью осторожности считать зародышем понятия момента силы относительно неподвижной точки. Пользуясь понятием «потенциального» плеча, Леонардо правильно решает задачу о равновесии рычага, в концах плеч которого закреплены идущие под некоторыми углами нити, перекинутые через блоки и натягиваемые некоторыми грузами.