§ 3. Уровни энергии
Теперь мы готовы к тому, чтобы вычислить уровни энергии основного состояния водорода, решая гамильтоновы уравнения (10.14). Мы хотим найти энергии стационарных состояний. Это значит, что мы должны отыскать те особые состояния |y>, для которых каждая из принадлежащих |y> амплитуд Ci=<i|y> обладает одной и той же зависимостью от времени, а именно е-wt. Тогда состояние будет обладать энергией E=hw. Значит, мы ищем совокупность амплитуд, для которых
где четверка коэффициентов аi не зависит от времени. Чтобы увидеть, можем ли мы получить эти амплитуды, подставим (10.17) в (10.14) и посмотрим, что из этого выйдет. Каждое ihdCi/dt в (10.14) перейдет в ECi. И после сокращения на общий экспоненциальный множитель каждое Сiпревратится в аi; получим
Это и нужно решить для отыскания a1, а2, а3и а4. Право, очень мило со стороны первого уравнения, что оно не зависит от остальных,— а это значит, что одно решение сразу видно. Если выбрать Е=А, то
a1=1, a2=a3=a4=0
даст решение. (Конечно, если принять все а равными нулю, то это тоже будет решение, но состояния оно не даст!) Будем считать наше первое решение состоянием | I>:
Его энергия
ЕI=А.
Все это немедленно дает ключ ко второму решению, получаемому из последнего уравнения в (10.18):
а1=а2=а3=0, а4=1, Е=А.
Это решение мы назовем состоянием |II>:
|//> = |4> = |-->,(10.20)
ЕII=А.
Дальше пойдет чуть труднее; оставшиеся два уравнения (10.18) переплетены одно с другим. Но мы все это уже делали. Сложив их, получим
Е(а2+ а3) = А(а2+ а3). (10.21)
Вычитая, будем иметь
Окидывая это взглядом и припоминая знакомый нам уже аммиак, мы видим, что здесь есть два решения:
Это смеси состояний |2> и |3>. Обозначая их |III> и |IV> и вставляя для правильной нормировки множитель 1/Ц2, имеем
ЕIII=А (10.24)
и
Мы нашли четверку стационарных состояний и их энергии. Заметьте, кстати, что наши четыре состояния ортогональны друг другу, так что их тоже можно при желании считать базисными состояниями. Задача наша полностью решена.
У трех состояний энергия равна А, а у последнего -ЗА. Среднее равно нулю, а это означает, что когда в (10.5) мы выбрали Е0=0, то тем самым мы решили отсчитывать все энергии от их среднего значения. Диаграмма уровней энергии основного состояния водорода будет выглядеть так, как на фиг. 10.2.
Фиг. 10.2. Диаграмма уровней энергии основного состояния атомарного водорода.
Различие в энергиях между состоянием |IV> и любым из остальных равно 4A. Атом, который случайно окажется в состояний |I>, может оттуда упасть в состояние |IV>и испустить свет: не оптический свет, потому что энергия очень мала, а микроволновой квант. Или, если осветить водородный газ микроволнами, мы заметим поглощение энергии, оттого что атомы в состоянии |IV>будут ее перехватывать и переходить в одно из высших состояний, но все это только на частоте w=4A/h. Эта частота была измерена экспериментально; наилучший результат, полученный сравнительно недавно, таков:
Ошибка составляет только три стомиллиардных! Вероятно, ни одна из фундаментальных физических величин не измерена лучше, чем эта; таково одно из наиболее выдающихся по точности измерений в физике. Теоретики были очень счастливы, когда им удалось вычислить энергию с точностью до 3·10-5; но к этому времени она была измерена с точностью до 2·10-11,т.е. в миллион раз точнее, чем в теории. Так что экспериментаторы идут далеко впереди теоретиков. В теории основного состояния атома водорода и вы, и мы находимся в одинаковом положении. Вы ведь тоже можете взять значение А из опыта — и всякому, в конце концов, приходится делать то же самое.
Вы, вероятно, уже слышали раньше о «21-с.м линии» водорода. Это и есть длина волны спектральной линии в 1420 Мгц между сверхтонкими состояниями. Излучение с такой длиной волны испускается или поглощается атомарным водородным газом в галактиках. Значит, с помощью радиотелескопов, настроенных на волны 21 см (или примерно на 1420 Мгц), можно наблюдать скорости и расположение сгущений атомарного водорода. Измеряя интенсивность, можно оценить его количество. Измеряя сдвиг в частоте, вызываемый эффектом Допплера, можно выяснить движение газа в галактике. Это одна из великих программ радиоастрономии. Так что мы с вами сейчас ведем речь о чем-то очень реальном, это вовсе не какая-то искусственная задача.
§ 4. Зеемановское расщепление
Хотя с задачей отыскания уровней энергии основного состояния водорода мы и справились, мы все же продолжим изучение этой интересной системы. Чтобы сказать о ней еще что-то, например чтобы подсчитать скорость, с какой атом водорода поглощает или испускает радиоволны длиной 21 см, надо знать, что с ним происходит, когда он возмущен. Нужно проделать то, что мы сделали с молекулой аммиака,— после того как мы нашли уровни энергии, мы отправились дальше и выяснили, что происходит, когда молекула находится в электрическом поле. И после этого нетрудно оказалось представить себе влияние электрического поля радиоволны. В случае атома водорода электрическое поле ничего с уровнями не делает, разве что сдвигает их все на некоторую постоянную величину, пропорциональную квадрату поля, а нам это неинтересно, потому что это не меняет разностей энергий. На сей раз важно уже магнитное поле. Значит, следующим шагом будет написать гамильтониан для более сложного случая, когда атом сидит во внешнем магнитном поле.
Каков же этот гамильтониан? Мы просто сообщим вам ответ, потому что никакого «доказательства» дать не можем, разве что сказать, что именно так устроен атом.
Гамильтониан имеет вид
Теперь он состоит из трех частей. Первый член А(sе·sр) представляет магнитное взаимодействие между электроном и протоном; оно такое же, как если бы магнитного поля не было. Влияние внешнего магнитного поля проявляется в остальных двух членах. Второй член (-mеsе·В) — это та энергия, которой электрон обладал бы в магнитном поле, если бы он там был один. Точно так же последний член (-mрsр·В) был бы энергией протона-одиночки. Согласно классической физике, энергия их обоих вместе была бы суммой их энергий; по квантовой механике это тоже правильно. Возникающая из-за наличия магнитного поля энергия взаимодействия равна просто сумме энергий взаимодействия электрона с магнитным полем и протона с тем же полем, выраженных через операторы сигма. В квантовой механике эти члены в действительности не являются энергиями, но обращение к классическим формулам для энергии помогает запоминать правила написания гамильтониана. Как бы. то ни было, (10.27) — это правильный гамильтониан.
Теперь нужно вернуться к началу и решать всю задачу сызнова. Но большая часть работы уже сделана, надо только добавить эффекты, вызываемые новыми членами. Примем, что магнитное поле В постоянно и направлено по z. Тогда к нашему старому гамильтонову оператору Н^ надо добавить два новых куска; обозначим их Н^':
Пользуясь табл. 10.1, мы сразу получаем
Смотрите, как удобно! Оператор Н', действуя на каждое состояние, дает просто число, умноженное на это же состояние. В матрице <i|H'|j> есть поэтому только диагональные элементы, и можно просто добавить коэффициенты из (10.28) к соответствующим диагональным членам в (10.13), так что гамильтоновы уравнения (10.14) обращаются в