Рис. 39. Спектральный состав излучения абсолютно чёрного тела (кривая Планка) при различных температурах, указанных у кривых. Спектральный интервал V соответствует видимому диапазону. Спектральный интервал А соответствует ближнему диапазону инфракрасного излучения (А-диапазон 0,75-1,5 мкм).
Рис. 40. Полная (интегральная по спектру) теплоотдача абсолютно чёрной поверхности с температурами 0-400 °C во внешнюю среду с температурой 0 °C: 1 — инфракрасным излучением, 2 — теплопроводностью (кондуктивной теплопередачей). Мощность инфракрасного излучения [σ(273+Т)4 — σ 2734], является суммарной по всему спектру излучения в полное полупространство (во все стороны).
В результате с уменьшением температуры свечение раскалённой поверхности из ослепительно белого становится красным, а потом невидимым:
Таким образом, появление заметного видимого свечения поверхности, соответствующее температуре порядка 500 °C, уже отвечает мощностям теплового излучения порядка 20 кВт/м2. Такая величина теплового потока является порогом воспламеняемости наиболее легко воспламеняемой группы В3 горючих материалов по ГОСТ 30402-96. То есть появление видимого свечения поверхности, например печей, может свидетельствовать не только о возможности травматических последствий касания, но и об опасности возникновения пожара в помещении, в том числе за счёт воспламенения материалов, даже не касающихся нагретых поверхностей. Все знают, как горячо стоять у раскалённой печки-«буржуйки» или у сильно разгоревшегося костра. Поэтому в целях безопасности для нагрева помещения предпочитают использовать инфракрасные излучатели с как можно более низкой температурой излучающей поверхности. Но меньшая мощность излучения низкотемпературных излучателей приводит к необходимости использования больших площадей излучателей для обеспечения заданного уровня теплоотдачи. С этой точки зрения инфракрасными излучателями в оптимальном случае должны быть сами поверхности стен и потолка помещения. В этом смысле поступающее со всех сторон на тело человека инфракрасное излучение создаёт ощущение обычного тепла (как от тёплого воздуха) и ассоциируется в быту с более тёплыми метеорологическими условиями.
Наиболее знакомый для человека уровень мощности инфракрасного излучения — солнечная постоянная 1,4 кВт/м2, равная интенсивности солнечного излучения, достигающего орбиты Земли. При прохождении через земную атмосферу солнечное излучение ослабляется на 20 % за счёт поглощения молекулами кислорода, азота, углекислого газа, воды и озона и ещё на 40 % за счёт пыли и дыма (рис. 38). В утренние и вечерние часы путь прохождения лучей в атмосфере очень сильно увеличивается, что приводит к ещё большему ослаблению интенсивности солнечного излучения на уровне моря. Таким образом, в полдень характерный уровень интенсивности солнечного излучения может достигать 1 кВт/м2 в горах и тропиках и 0,5 кВт/м2 в средней полосе России. Эта величина относится к плоскости, ориентированной строго на Солнце, и не зависит от времени года. С учётом наклона Солнца над горизонтом на садовый участок площадью 6 соток даже зимой в солнечный день поступает до 100 кВт солнечной энергии в полдень. Эта пиковая полуденная величина летом ещё более возрастает до 150 кВт и является основой жизни.
Тепловое воздействие прямого солнечного излучения отчётливо ощущается человеком и может привести к тепловому (солнечному) удару уже при температурах 25–30 °C. Это свидетельствует о том, что тепловые потоки 0,5–1 кВт/м2 и в бане могут оказать определяющее влияние на тепловой режим человеческого организма. Человек одинаково воспринимает воздействие теплового излучения при сухой и мокрой коже. Что касается нагрева «неживых» материалов, то солнечное излучение способно раскалить, например, песок на пляже или в пустыне до температур порядка 100 °C. Действительно, подъём температуры доски на солнце продолжается до тех пор, пока теплоотвод от поверхности доски за счёт собственного излучения доски и кондуктивного охлаждения (см. рис. 40) не сравняется с мощностью падающего солнечного излучения порядка 1 кВт/м2, что и происходит при температурах порядка 100 °C. С другой стороны, температура потолка в бане на уровне 100 °C обеспечивает мощность инфракрасного излучения на уровне обычных в России мощностей солнечного излучения.
Инфракрасное излучение практически не поглощается воздухом в слоях 2-10 м, характерных для бань, и не разогревает его, распространяется прямолинейно и поступает из излучателя непосредственно на стены, пол, потолок, разогревая их. «Управлять» мощностью инфракрасного излучения можно только регулируя температуру излучателя, а также устанавливая на пути излучения различного рода экраны. Такими экранами окружают, например, раскалённые металлические стенки топливников печей (в виде кожухов-калориферов), загораживают особо холодные стены портьерами, ширмами и т. п.
Рис. 41. Спектральная зависимость коэффициента отражения оптического излучения кожей человека. V — спектральный интервал видимого излучения, А — спектральный интервал А-диапазона инфракрасного излучения.
Инфракрасное излучение исходит и от тела человека, охлаждая его. Поскольку инфракрасное излучение при температурах ниже 100 °C является длинноволновым (λ>3 мкм), для которого степень черноты кожи человека (а также древесины) близка к единице ε=1-R~=1 (где R — коэффициент отражения, приведённый на рис. 41), то мощность излучения тела человека (и древесины) близка к мощности излучения абсолютно чёрного тела (рис. 42). Все рассуждения предыдущих разделов относились к случаю отсутствия инфракрасного нагрева или охлаждения тела человека, то есть предполагалось, что стены бани (или иного помещения) имеют температуру человеческого тела порядка 40 °C. Но если стены бани имеют температуру большую или меньшую, чем температура тела человека, то тело человека дополнительно нагревается или охлаждается.
Рис. 42. Мощность инфракрасного излучения (интегральная по всему спектру) с 1 м2 абсолютно чёрного тела во все стороны (в полупространство) при температурах от 0 до 100 °C: 1 — рассчитанная по формуле σ(273+Т)4, 2 — экстраполяционная прямая 0,54+0,007(Т-40), где Т в °С.
При слабых (до 20 °C) бытовых отклонениях температур стен от температуры человека ΔТ<20 °C тело отдаёт или получает лучистое тепло в количестве qлyч=αлΔТ, где αл =7 Вт/(м2 град) — коэффициент бытовой лучистой теплопередачи (рис. 42). При температурах 60-120 °C коэффициент лучистой теплопередачи возрастает до 10 Вт/(м2 град). При температуре стен помещения порядка 0 °C раздетый человек даже с сухой кожей отчётливо ощущает «леденящий холод стен» даже при температурах воздуха 40 °C и максимальной влажности воздуха, поскольку теряет за счёт собственного инфракрасного излучения 0,5 Вт/м2, а получает за счёт поглощения инфракрасного излучения, исходящего от холодных стен, всего 0,3 Вт/м2. В результате суммарный баланс отрицателен и очень велик 0,2 Вт/м2. Для компенсации столь высоких теплопотерь необходимо поднять температуру воздуха в помещении на 20–30 °C, то есть до 60–70 °C. Если же температуры стен и потолка составляют 100 °C, то суммарный тепловой баланс (по лучистому теплу) раздетого человека с сухой кожей будет положительным 0,5 Вт/м2, и воздух можно охладить до минус 10 °C.
В обыденной жизни человек отчётливо ощущает изменения лучистых потоков при изменениях температуры стен всего в несколько градусов (при постоянстве температуры воздуха). Так, строительные нормы и правила СНиП 41-01-2003 рекомендуют не использовать на постоянных рабочих местах в промышленных производствах потоки лучистого тепла более 35 Вт/м2, что соответствует наличию излучающих поверхностей с температурой на 5 °C выше температуры человека. А при величинах лучистого потока более 140 Вт/м2 необходимо применять воздушное душирование (обдув открытых частей тела человека воздухом). Если человека окружают излучающие поверхности с разной температурой, то необходимо соответствующим образом суммировать и усреднить мощности излучений, достигающих тела человека, с разных поверхностей. В связи с этим отметим, что упомянутые выше экраны могут значительно изменить картину лучистых потоков, «забирая» тепловую энергию из воздуха и преобразуя её в лучистое тепло, или, наоборот, поглощая потоки лучистой энергии и преобразовывая её в тепловую энергию воздуха. Например, застеклённый оконный проём в морозную погоду представляет собой холодный элемент помещения, «забирающий» лучистую энергию (а точнее, слабо излучающий тепло элемент и слабо отражающий падающее на него излучение). Но если загородить окно экраном (например, в виде матерчатой шторы), то экран приобретает температуру, близкую к комнатной, и будет излучать обратно в помещение значительно больше лучистой энергии. Этот эффект издавна применялся в жилищном строительстве, например, при обшивке тканью (гобеленами) каменных стен замков в Западной Европе Средневековья, при отгораживании шторами спальных мест и т. п. При этом практически не важна плотность или теплопроводность тканей, значительно большее влияние имеет количество экранов (слоёв экранирования). Также ясно, что в пасмурную ночь теплее, чем в ясную звёздную, поскольку со всех предметов на Земле тепловое излучение в ясную погоду (даже днём) безвозвратно «улетает» в космос (имеющий температуру минус 273 °C), а облака частично компенсируют эти теплопотери собственным излучением с температурой капель воды в облаке, например, 0 °C. Напомним также, что атмосфера имеет «окна» оптической прозрачности 3,4–4,2 мкм и 8-12 мкм. Эти «окна» ограничены с обеих сторон спектральными полосами поглощения молекул воды и углекислого газа. Поэтому при высокой влажности воздуха атмосфера «закрывает» эти «окна» прозрачности, и излучение уже не может «улетать в космос» (парниковый эффект).