Рейтинговые книги
Читем онлайн Большая Советская Энциклопедия (ЧЕ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 138

Рис. 2. Движение заряженной частицы в среде со скоростью n > u. Угол q указывает направление возникающего излучения.

Черенкование

Черенкова'ние, способ размножения растений отделяемыми от них частями (черенками ). Применяется в плодоводстве, декоративном садоводстве, лесоводстве, при выращивании некоторых технических, лекарственных и др. растений. Чаще всего практикуется размножение черенками корневыми и стеблевыми (одревесневшими без листьев и зелёными с листьями). Корневыми черенками размножают малину, ежевику, молодые сеянцы яблони, серебристый тополь и др. Стеблевыми одревесневшими черенками размножают смородину, виноград, айву, инжир и др. Зелёные черенки с 2—3 листьями применяют для размножения смородины, сливы, вишни, винограда, некоторых сортов крыжовника и др. Листовыми черенками размножают бегонию, фиалку и др. См. Вегетативное размножение .

Черенковский счётчик

Черенко'вский счётчик, прибор для регистрации заряженных частиц и g-квантов, в котором используется Черенкова—Вавилова излучение . Если заряженная частица движется в среде со скоростью u, превышающей фазовую скорость света для данной среды (c/n , n — показатель преломления среды, с — скорость света в вакууме), то частица испускает черенковское излучение. Последнее происходит в определённом направлении, причём угол J между направлением излучения и траекторией частицы связан с u и n соотношением:

  cos J = c/ un = 1/ bn (b = u/c ). (1)

  Интенсивность N черенковского излучения на 1 см пути в интервале длин волн от l1 до l2 выражается соотношением:

  . (2)

  Здесь Z — заряд частицы (в единицах заряда электрона).

  В отличие от сцинтилляционного счётчика , где регистрируются частицы с любой скоростью, а излучение изотропно и запаздывает во времени, в Ч. с. свет излучается только частицами, скорости которых u &sup3; c/n (b &sup3; 1/n ), причём излучение происходит одновременно с их прохождением и под углом J к траектории частицы. С ростом скорости частицы (надпороговой) растут угол J и интенсивность излучения. Для предельных скоростей, близких к скорости света [(1&frac34;b) << 1], угол J достигнет предельного значения:

  Jмакс = arccos (1/n ). (3)

  Количество света, излучаемое в Ч. с., как правило, составляет неск. % от светового сигнала сцинтилляционного счётчика.

  Основные элементы Ч. с.: радиатор (вещество, в котором u > с/n ), оптическая система, фокусирующая свет, и один или несколько фотоэлектронных умножителей (ФЭУ), преобразующих световой сигнал в электрический (см. рис. ). Радиаторы изготавливают из твёрдых, жидких и газообразных веществ. Они должны быть прозрачны к черенковскому излучению и иметь низкий уровень сцинтилляции, создающих фоновые сигналы. Стандартные материалы радиаторов: органическое стекло (n = 1,5), свинцовое стекло (n = 1,5), вода (n = 1,33).

  Ч. с. получили широкое применение в экспериментах на ускорителях заряженных частиц , т.к. они позволяют выделять частицы, скорость которых заключена в определённом интервале. С ростом энергии ускорителей и, следовательно, с ростом энергии частиц особенно широкое применение получили газовые Ч. с., обладающие способностью выделять частицы ультрарелятивистских энергий, для которых (1— b) << 1. Угол излучения J в газе очень мал, мала и интенсивность излучения на единицу пути. Чтобы получить вспышку света, достаточную для регистрации, приходится увеличивать длину газовых Ч. с. до 10 м и более. В газовых Ч. с. можно плавно менять показатель преломления, изменяя давление рабочего газа.

  Ч. с. существуют 3 типов: пороговые, дифференциальные и счётчики полного поглощения. Основными характеристиками первых 2 типов Ч. с. являются эффективность регистрации и разрешающая способность по скорости частиц, т. е. способность счётчика разделять две частицы, двигающиеся с близкими скоростями. Пороговый Ч. с. должен регистрировать все частицы со скоростями, большими некоторой (пороговой), поэтому оптическая система такого Ч. с. (комбинация линз и зеркал) должна собрать, по возможности, весь излученный свет на катод ФЭУ.

  Дифференциальные Ч. с. регистрируют частицы, движущиеся в некотором интервале скоростей от u1 до u2 . В традиционных дифференциальных Ч. с. это достигается выделением оптической системой света, излучаемого в интервале соответствующих углов от J1 до J2 . Линза или сферическое зеркало, помещенное на пути черенкового света, фокусирует свет, излученный под углом J, в кольцо с радиусом

  R = f J, (4)

  где f &frac34; фокусное расстояние линзы или зеркала. Если в фокусе системы поместить щелевую кольцевую диафрагму, а за диафрагмой один или несколько ФЭУ, то в такой системе свет будет зарегистрирован только для частиц, излучающих свет в определённом интервале углов. В дифференциальных Ч. с. с прецизионной оптической системой можно выделить частицы, скорость которых отличается всего на 10&frac34;6 от скорости др. частиц. Такие Ч. с. требуют особого контроля давления газа и формирования параллельного пучка частиц.

  Ч. с. полного поглощения предназначены для регистрации и спектрометрии электронов и g-квантов. В отличие от рассмотренных Ч. с., где частица теряла в радиаторе ничтожно малую долю энергии, Ч. с. полного поглощения содержит блок радиаторов большой толщины, в котором электрон или g-квант образует электронно-фотонную лавину и теряет всю или большую часть своей энергии. Как правило, радиаторы в этом случае изготавливают из стекла с большим содержанием свинца. В радиаторе из такого стекла, например толщиной 40 см , может практически полностью тормозиться электрон с энергией до 10 Гэв. Количество света, излучаемого в Ч. с. полного поглощения, пропорционально энергии первичного электрона или g-кванта. Разрешающая способность DE Ч. с. полного поглощения (по энергии) зависит от энергии и для самых чувствительных ФЭУ может быть выражена формулой:

   %

  где E — энергия электрона в Гэв.

  Лит.: Джелли Дж., Черенковское излучение и его применения, пер. с англ., М., 1960; Зрелов В. П., Излучение Вавилова—Черенкова и его применение в физике высоких энергий, ч. 1&frac34;2, М., 1968.

  В. С. Кафтанов.

Схема газового порогового черенковского счётчика на 70 Гэв ускорителя Института физики высоких энергий (СССР). Черенковский свет собирается на катод ФЭУ с помощью оптической системы, состоящей из плоского зеркала и кварцевой линзы.

Черенок

Черено'к, часть растения, используемая для вегетативного размножения . Ч. заготавливают с высококачественных растений (называемых маточными, или материнскими). Образовавшиеся из Ч. растения сохраняют свойства и признаки маточных. Различают Ч. корневые, стеблевые и листовые. При определённых условиях выращивания на стеблевых Ч. образуются корни, на корневых — почки, на листовых — и почки и корни. Способность растений к размножению Ч. зависит от видовых и сортовых особенностей маточных растений, а также от условий внешней среды, в которых происходит укоренение Ч. (температура, влажность, аэрация и т.д.). См. также ст. Черенкование .

Череп

Че'реп (cranium), скелет головы позвоночных животных и человека. Различают осевой и висцеральный Ч. Осевой, или мозговой, Ч. представляет переднее продолжение осевого скелета туловища, разрастающееся вокруг головного мозга, органов обоняния и внутреннего уха. Висцеральный, или лицевой, Ч. — скелет переднего отдела кишечника (глотки), первоначально представленный жаберными (висцеральными) дугами, разделяющими жаберные щели.

  Череп животных. Изменения Ч. в процессе эволюционного развития организмов обусловлены прогрессивным развитием головного мозга и органов чувств, заменой жаберного дыхания лёгочным и сменой различных способов питания, что было связано с переходом организмов из водной среды на сушу. Осевой Ч. состоит из мозговой коробки (вмещающей головной мозг), носовых капсул (окружающих органы обоняния) и ушных капсул (заключающих внутреннее ухо). Мозговая коробка подразделяется на передний (прехордальный) и задний (хордальный) отделы. Прехордальный отдел объединяет глазничную и носовую области Ч., хордальный — затылочную и ушную. Прехордальный отдел развивается из трабекулярных хрящей и расположенных над ними глазничных (орбитальных) хрящей (рис. 1 ). У эмбрионов хордальный отдел развивается вокруг головного конца хорды из расположенных по его сторонам парахордальных хрящей и ушных капсул. Парахордалии соответствуют слившимся невральным дугам наиболее передних позвонков, что позволяет говорить о «позвоночном» происхождении хордального отдела. У кистепёрых рыб оба отдела остаются самостоятельными, у остальных позвоночных они срастаются у эмбрионов. Прехордальный отдел вмещает обычно только передний мозг (большие полушария), хордальный — большую часть головного мозга. На Ч. взрослых животных границу между отделами обозначают по линии гипофиза и отверстия для выхода из Ч. тройничного нерва. Носовые капсулы срастаются с прехордальным отделом. У кистепёрых рыб и наземных позвоночных помимо наружных ноздрей имеются внутренние (хоаны), открывающиеся в переднюю часть ротовой полости.

1 ... 26 27 28 29 30 31 32 33 34 ... 138
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (ЧЕ) - БСЭ БСЭ бесплатно.

Оставить комментарий