Второй закон уточняет первый и гласит: «Каждая частица материи в отдельности стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой, хотя некоторые из этих частиц часто бывают вынуждены от нее отклоняться…» Здесь Декарт ссылается на неизменность бога, который сохраняет движение «точно таким, каково оно в данный момент, безотносительно к тому, каким оно могло быть несколько ранее».
Итак, покой — такое же «состояние», как и движение. Поэтому, «когда тело находится в покое, оно имеет силу пребывать в покое, стало быть, противостоять всему, что могло бы изменить его; точно так же движущееся тело обладает силой продолжать свое движение с той же скоростью и в том же направлении»{96}.
Иначе говоря, покой, по Декарту, обладает активным сопротивлением тому, что способно нарушить его, и в этом отношении в каком-то смысле компенсирует отсутствующее в картезианской механике понятие массы. Как мы увидим дальше, при разборе законов соударения тел Декарт именно на этом основании утверждал, что малое тело не способно сдвинуть большое, как бы ни была велика скорость движения этого малого тела. Существование состояния покоя у частиц Декарт считал достаточным и для объяснения твердости тел.
Очень важно указание Декарта на то, чем измеряются «сила пребывать в покое» и «сила продолжать свое движение с той же скоростью и в том же направлении». «Судить об этой силе следует по величине тела, в котором она заключена, по поверхности, которой данное тело отделяется от другого, а также по скорости движения и по различным способам, какими сталкиваются различные тела».
Весьма поучительны и показательны в этом отношении позднейшие суждения Мальбранша (1638—1715), воспитанного в атмосфере картезианских идей. Мальбранша не удовлетворяла та концепция Декарта, которая сводила твердость тела к простому покою его частиц. Он прямо и открыто говорил о заблуждениях господина Декарта.
По словам Мальбранша, «этот великий человек» считал, что покой имеет такую же силу, как движение, а потом стал измерять действие силы покоя по величине тел, находящихся в покое.
Для объяснения связанности частиц твердого тела мало одного покоя этих частиц; нужно, полагал Мальбранш, прибегнуть к представлению о движении тонкой материи, окружающей и сжимающей частицы тела. «Мне кажется ясным, — писал он, — что всякое тело само по себе бесконечно мягко, потому что покой вовсе не имеет силы сопротивляться движению, а потому часть тела, испытывающая больший толчок, чем соседняя с ним, должна отделиться от нее.
Таким образом, твердые тела являются таковыми лишь благодаря сжатию невидимой материей, их окружающей и проникающей в поры». Это так называемые «малые вихри», которые впервые именно Мальбранш ввел в картезианскую физику.
Для Мальбранша причина, в силу которой частицы твердых тел так крепко связаны друг с другом, заключается в том, что вне их находятся другие небольшие тела, пребывающие в несравненно более сильном движении, чем грубый воздух, который мы вдыхаем, и эти тела их толкают и сжимают. Не их покой является причиной того, что нам трудно разъединить эти частицы, а движение тех маленьких тел, которые их окружают и сжимают.
По Мальбраншу, тонкая материя необходимо должна быть причиной твердости тел или того противодействия, которое мы чувствуем, когда делаем усилие, чтобы их сломать. В качестве поясняющего примера Мальбранш ссылался на опыты Герике с «магдебургскими полушариями», прижимаемыми друг к другу давлением окружающего воздуха.
Вопреки и вразрез с Декартом, Мальбранш утверждал, что способность и сила всякого тела пребывать в том состоянии, в котором оно находится, относятся лишь к движению, а не к покою, потому что тела сами по себе не имеют никакой силы. По Мальбраншу, «покой не имеет силы, чтобы противостоять движению, и малейшее движение содержит больше способности и больше силы, чем самый большой покой; а значит, и не следует основывать сравнение сил движения и покоя на отношении, существующем между величинами тел, находящихся в движении и покое, как это сделал г-н Декарт»{97}.
Покой для Декарта был противоположностью движения, а потому мог рассматриваться им уже как таковой в качестве некоей силы, активно противодействующей движению. По Мальбраншу, покой есть просто нуль движения. «Движения бывают бесконечно разнообразны, они могут увеличиваться и уменьшаться; покой же есть ничто, а потому состояния покоя не разнятся друг от друга. Один и тот же шар, когда он катится вдвое скорее, имеет вдвое больше силы или движения, чем когда он катится в два раза медленнее; но нельзя сказать, чтобы один и тот же шар в одно время обладал большим покоем, в другое меньшим».
Согласно идеям Мальбранша, тела, находящиеся в движении, обладают движущей силой, а тела, находящиеся в покое, не обладают силой своего покоя. «Ведь отношение движущих тел к окружающим их телам постоянно изменяется, а следовательно, нужна постоянная сила, чтобы вызывать эти постоянные изменения… Для того же, чтобы ничего не делать, не нужна сила. Когда отношение какого-нибудь тела к окружающим его телам остается всегда одним и тем же, то ничего и не происходит»{98}.
Таково развитие, которое идеи Декарта получили в рамках картезианской школы.
Отметим, наконец, что говоря о количестве движения, Декарт не учитывал направление движения. Он совершенно категорически разделял оба понятия. В письме к Мерсенну от 11 марта 1640 г. он писал, что «сила движения» и «сторона, в которую движение совершается», вещи совершенно разные. При этом он ссылается на свою «Диоптрику», где действительно сказано, что «сила, побуждающая продолжать двигать мяч, отличается от той, которая направляет его предпочтительно в одну сторону, а не в другую», и что направление мяча на определенную точку «может быть изменено, даже если не произошло никаких изменений в силе его движения».
Эти рассуждения вплотную подводят к законам удара тел, которые Декарт рассматривает непосредственно вслед за тремя рассмотренными общими законами. Известно, что законы Декарта в большей своей части неверны. Поэтому, казалось бы, нет необходимости рассматривать их подробнее. Однако сделать это необходимо, и не только потому, что это позволяет лучше понять декартовский закон сохранения количества движения, но и потому, что на его примере раскрываются существенные вопросы о соотношении теории и эксперимента в механике XVII в.
ИСТОРИЯ ОТКРЫТИЯ ЗАКОНОВ УДАРА
Вопросами теории удара интересовался уже Галилей. Им посвящен «шестой день» знаменитых «Бесед», оставшийся не вполне законченным[23]. Галилей считал нужным определить прежде всего, «какое влияние на результат удара оказывают, с одной стороны, вес молота, а с другой — большая или меньшая скорость его движения, и найти, если возможно, способ измерения и выражения того и другого вида энергии»{99}.
При решении этих вопросов Галилей полагал необходимым начать с экспериментов. Но если при экспериментальном исследовании законов падения тел он уже имел в качестве ориентира теоретически выведенную формулу униформно-дифформного движения, то здесь, в теории удара, приходилось начинать заново.
Неизвестно, сколько и какие именно эксперименты произвел Галилей. Нет сомнения, что описываемый ниже опыт был им действительно произведен. Однако он разочаровал Галилея. Опыт заключался в следующем. К коромыслу весов были подвешены на одном конце противовес, а на другом два сосуда: первый с водой, а второй, подвешенный под первым на расстоянии двух локтей, пустой. Верхний сосуд имел отверстие, которое можно было закрывать и открывать.
ГАЛИЛЕО ГАЛИЛЕЙ (1564-1642)
Итальянский астроном, механик и физик, один из основоположников точного естествознания. Он открыл закон инерции, законы падения тела, колебаний маятника. С помощью изготовленной им зрительной трубы Галилей впервые наблюдал небесные светила. Открыл горы на Луне, четыре спутника Юпитера, фазы Венеры, звездное строение Млечного Пути, пятна на Солнце
Галилей предполагал, что при вытекании воды сила удара заставит опуститься плечо коромысла, и величину этой силы можно будет измерить посредством добавочного груза на другом плече. Результат оказался «неожиданным, даже совершенно изумительным»: «Как только отверстие было открыто и вода начала вытекать, весы наклонились, но в сторону противовеса; когда же вытекающая вода достигла дна нижнего сосуда, дальнейшее опускание противовеса прекратилось и он начал равномерно подниматься, пока не достиг прежнего положения и весы не пришли снова в равновесие, не отклонившись и на волос в другую сторону».
Для нас теперь в этом нет ничего удивительного.
До того как первая капля достигнет нижнего сосуда и будет производить давление на его дно, имеет место уменьшение давления в результате того, что исключается вес струи жидкости и, кроме того, сказываемся направленная вверх реакция вытекающей струи. Такова причина того начального отклонения стрелки, которое заметил Галилей. Когда вытекающая струя достигнет нижнего сосуда, давление на дно компенсирует потерю давления, происходящую в результате указанных причин.