Рейтинговые книги
Читем онлайн Механика от античности до наших дней - Ашот Григорьян

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 103

В 80-х годах XVII в., упомянув о трудах Рена, Валлиса, Гюйгенса и Мариотта, Ньютон посвятил несколько страниц своих «Начал» произведенным им самим экспериментам. Однако главное, что внес Ньютон в изучение удара, это не столько новые эксперименты, сколько та связь, которую он установил между явлениями удара и формулированным им законом равенства действия и противодействия.

Связь законов удара с законом действия и противодействия Ньютон раскрывает в следующих словах: «Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит от силы второго тела в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих же тел друг на друга постоянно равны. От таких взаимодействий всегда происходят равные изменения не скоростей, а количества движения, предполагая, конечно, что тела никаким другим усилиям не подвергаются. Изменения скоростей, происходящие также в противоположные стороны, будут обратно пропорциональны массам тел, ибо количества движения получают равные изменения»{109}.

Что касается существа собственных опытов, Ньютон изложил их в следующих словах: «Производя испытания над маятниками длиною 10 футов и над массами, равными и неравными, и пуская тела так, чтобы они встречались, пройдя большие промежутки, например 8, 12, 16 футов, я получал с ошибкою, меньшею 3 дюймов, в измерениях, что при прямом ударе между телами изменения их количеств движения были равны и направлены в стороны противоположные, откуда следует, что действие и противодействие между собой равны… То же самое происходит и при движении тел в одну сторону… Подобное соотношение имеет место и в остальных случаях: полное количество движения, рассчитываемое, взяв сумму количеств движения, когда они направлены в одну сторону, и разность, когда они направлены в стороны противоположные, никогда не изменяется от удара при встрече тел»{110}.

Отсюда отчетливо выявляется неверность декартовской формулировки закона сохранения количества движения, не принимающей во внимание алгебраические знаки.

Ньютон отмечает, что описанные им опыты относятся к неупругим телам, — они «удаются как с телами мягкими, так и с жесткими, и совершенно не зависят от степени твердости их». В случае же тел упругих «необходимо лишь уменьшить скорость отражения сообразно степени упругости тел».

Итак, к 80-м годам уже было прекрасно осознано, что закон сохранения количества движения в том виде, как формулировал его Декарт, неправилен. Более того, если принять его в этом виде, с одинаковым успехом может быть доказано и бесконечное возрастание количества движения, т. е. «вечное движение», и, наоборот, убывание его.

ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА ТЯГОТЕНИЯ

Декарт писал 12 сентября 1638 г. Мерсенну: «Невозможно сказать что-либо хорошее и прочное касательно скорости, не разъяснив на деле, что такое тяжесть и вместе с тем вся система мира»{111}. Это заявление диаметрально противоположно заявлению Сальвиати в «Беседах» Галилея: «Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения естественного движения тел, по поводу которого различными философами было высказано столько различных мнений. Будет достаточно, если мы рассмотрим, как он [Галилей] исследует и излагает свойства ускоренного движения (безотносительно к причинам последнего)»{112}.

С заявлением Галилея небезынтересно сопоставить позднейшее, столь же осторожное высказывание Роберваля, относящееся к 1669 г. Французский ученый указывал, что возможны разные точки зрения на природу тяжести: она заключена в самом тяжелом теле, она — результат взаимодействия между двумя телами, она производится третьим телом, толкающим одно к другому. Роберваль не вдавался в подобные дискуссии и заявлял: «Я всегда по возможности буду стараться подражать Архимеду, который именно в связи с тяжестью выдвигает в качестве принципа или постулата постоянный и во все минувшие до сей поры столетия засвидетельствованный факт: существуют тяжелые тела, отвечающие условиям, о которых он говорит в начале своего трактата на эту тему. На этом основании я построю, как и он, свои рассуждения о механике, не затрудняя себя вопросом, что же такое в конце концов начала и причины тяжести, и довольствуясь тем, что буду следовать истине, если она пожелает когда-либо предстать ясно и отчетливо передо мною. Вот правило, которого я всегда хочу держаться в сомнительных рассуждениях…»

Излишне повторять, как часто Ньютон говорил, что он отказывается вникать в природу тяжести. Напомним лишь некоторые наиболее выразительные высказывания.

«Под словом притяжение, — писал он в «Началах», — я разумею здесь вообще какое бы то ни было стремление тел к взаимному сближению — безразлично, происходит ли это стремление от действия самих тел, которые стараются сблизиться или приводят друг друга в движение посредством испускаемого ими эфира, либо, наконец, оно вызывается материальной или нематериальной средой (эфиром, воздухом и т. п.)»{113}. Аналогично в «Оптике»: «То, что я называю притяжением, может происходить посредством импульса или какими-нибудь другими способами, мне неизвестными. Я применяю здесь это слово для того, чтобы только вообще обозначить некоторую силу, благодаря которой тела стремятся друг к другу, какова бы ни была причина. Ибо мы должны изучить по явлениям природы, какие тела притягиваются и каковы законы и свойства притяжения, прежде чем исследовать причину, благодаря которой притяжение происходит»{114}.

Ньютон утверждал: «Причину… этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю… Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моря»{115}.

Формулировка закона тяготения и самое формирование понятия силы тяготения были результатом длительного исторического развития. Здесь незачем прослеживать хронологически все те многочисленные и разнообразные подходы к концепции, которые в конечном итоге привели к формулировке закона тяготения и его приложению к небесной механике. Достаточно отметить некоторые важнейшие вехи.

В ньютоновом законе тяготения мы выделим три наиболее характерных момента. Во-первых, в этом законе сила тяготения есть универсальный принцип. При его выводе из свойств материи принимается во внимание только одно — наличие массы. Масса, по Ньютону, — всеобщая характеристика любой материи. Поэтому закон тяготения, распространяющийся на все тела, безотносительно ко всем другим их свойствам, — это высшее, математизированное выражение идеи единства Вселенной, подготовлявшееся трудами Коперника, Кеплера, Бруно, Галилея. В законе тяготения исчезает противоположность небесного и земного, «подлунного» и «надлунного». Во-вторых, тяготение основано на взаимодействии тел, а не на одностороннем притяжении одного тела другим. И, в-третьих, понятие силы тяготения у Ньютона уточнено количественно.

Первые шаги к математизации силы притяжения были сделаны Кеплером. В своей «Новой астрономии» (1609) Кеплер опубликовал первые два закона движения планет, носящие его имя и открытые им при обработке данных, относящихся к Марсу. Десятью годами позже (1619) в «Гармонии мира» Кеплер дополнил их третьим законом: кубы средних расстояний планет от Солнца пропорциональны квадратам времен их обращения, или, как формулировал сам Кеплер на языке своего времени, — средние расстояния от Солнца стоят в «полуторном отношении» к времени обращения.

Показательно, что уже в 30—40-х годах Декарт задумывался над опытами, которые могли бы позволить определить убывание и возрастание тяжести на разных расстояниях от центра Земли, сознавая вместе с тем всю трудность подобной задачи. Обсуждая в переписке с Мерсенном вопрос о том, имеет ли тело большую или меньшую тяжесть, находясь к центру Земли ближе, чем находясь вдали от него, Декарт замечает: «Единственно, что можно сказать, что природа тяжести есть вопрос факта, т. е. люди не могут определить ее иначе, как производя опыты, а из опытов, производимых здесь, в нашем воздухе, нельзя судить о том, что происходит гораздо ниже, около центра Земли, или гораздо выше, за облаками, ибо если убывание или возрастание тяжести происходит, то маловероятно, чтобы оно происходило везде в одинаковой пропорции»{116}.

Проектируя возможный опыт, Декарт тут же отмечал его трудности. Опыт заключается в следующем: кусок свинца вместе с веревкой взвешивается на вершине башни, а затем прикрепляется одним концом к чашке весов и опускается в колодец. Разность в весе должна свидетельствовать о неравномерности земного притяжения. Декарт понимал, что опыт мог дать результаты лишь в том случае, если разница в весе весьма значительна, между тем глубина колодца и высота башни мала по сравнению с радиусом Земли.

1 ... 30 31 32 33 34 35 36 37 38 ... 103
На этой странице вы можете бесплатно читать книгу Механика от античности до наших дней - Ашот Григорьян бесплатно.

Оставить комментарий