Левая часть тривиальна. Скорость изменения импульса вещества равна просто действующей на него силе. Для частиц F=q(E+vXB), а для распределенных зарядов на единицу объема действует сила F=(rE+jXB). Однако слагаемое «поток импульса» несколько странно. Оно не может быть дивергенцией какого-то вектора, ибо это не скаляр, а скорее x-компонента некоторого вектора. Но как бы то ни было оно должно иметь вид
поскольку x-компонента импульса должна течь в каком-либо из трех направлений. Во всяком случае, каковы бы ни были а, b и с, такая комбинация предполагается равной потоку x-компоненты импульса.
Дальше по правилам той же самой игры напишем rЕ+jXB только через Е и В, исключив плотность заряда r и плотность тока j и затем жонглируя слагаемыми и произведя подстановку, получаем
Сопоставляя затем разные слагаемые, мы должны найти выражения для gx, a, b и с. В общем, здесь масса работы, но мы не собираемся заниматься ею. Вместо этого мы найдем только выражение для плотности импульса g и притом совсем другим способом.
В механике есть очень важная теорема, которая говорит: каков бы ни был поток энергии любого вида (энергия поля или какой-то другой сорт энергии), произведение ее количества, прошедшего через единицу площади в единицу времени, на 1/с2 равно импульсу в единице объема пространства. В случае электродинамики эта теорема говорит, что g равно вектору Пойнтинга, поделенному на с2:
(27.21)
Так что вектор Пойнтинга дает нам не только поток энергии, но после деления на с2 и плотность импульса. Этот же результат получился бы из анализа, который мы только что предполагали проделать, однако более заманчиво воспользоваться общей теоремой. Сейчас мы рассмотрим несколько интересных примеров и рассуждений, призванных убедить вас в справедливости этой общей теоремы.
Первый пример: возьмем множество заключенных в ящик частиц. Пусть, скажем, их будет N штук на кубический метр, и пусть они движутся вдоль ящика со скоростью v. Рассмотрим теперь воображаемую плоскость, перпендикулярную к v. Поток энергии через единицу площади этой плоскости в секунду равен Nv (т. е. числу частиц, пересекающих плоскость за секунду), умноженному на энергию каждой частицы. Энергия же каждой частицы будет m0c2/Ц(l-v2/c2). Так что поток энергии равен
Но импульс каждой частицы равен m0vЦ(1-v2/c2), откуда плотность импульса будет
Фиг. 27.7. Порция энергии U, двигаясь со скоростью с, несет импульс, равный U/c.
что в полном согласии с теоремой как раз равно 1/с2 на поток энергии. Таким образом, для пучка частиц теорема оказывается верной.
Верна она и для света. При изучении света (см. вып. 3) мы установили, что, когда происходит поглощение света, поглотителю передается некоторое количество импульса. Действительно, в гл. 34 (вып. 3) мы видели, что импульс равен поглощенной энергии, деленной на с [уравнение (34.24)]. Пусть U0будет энергией, падающей в секунду на единичную площадь, тогда переданный той же поверхности за то же время импульс равен U0/c. Но импульс распространяется со скоростью с, так что его плотность перед поглотителем должна быть равна U0/с2. Теорема снова справедлива.
Наконец, я приведу рассуждение Эйнштейна, которое еще раз продемонстрирует то же самое утверждение. Предположим, у нас есть вагон с какой-то большой массой М, который может без трения катиться по рельсам. В одном его конце расположено устройство, способное «выстреливать» какие-то частицы или световой импульс (совершенно безразлично, чем оно стреляет), которые ударяются о противоположный конец вагона. Следовательно, некоторое количество энергии, скажем U, находившееся первоначально на одном конце (фиг. 27.7,а), перелетает на противоположный конец (фиг. 27.7,в). Таким образом, энергия U перемещается на расстояние, равное длине вагона L. Этой энергии U соответствует масса U/с2, так что если вагон вначале стоял, то его центр масс должен передвинуться. Эйнштейну не понравилось заключение о том, что центр масс предмета можно переместить какими-то манипуляциями внутри него. Он считал, что никакие внутренние действия не могут изменить центр масс. Но если это так, то при перемещении энергии U с одного конца на другой сам вагон должен откатиться на расстояние х
(фиг. 27.7,в). В самом деле, нетрудно убедиться, что полная масса вагона, умноженная на х, должна быть равна произведению перемещенной энергии U/c2на длину L (при условии, что U/C2много меньше М), т. е.
(27.22)
Теперь рассмотрим конкретный случай, когда энергия переносится вспышкой света. (Все рассуждения можно повторить и для частиц, но мы будем следовать за Эйнштейном, который интересовался проблемами света.) Что заставляет вагон двигаться? Эйнштейн рассуждал так: при испускании света должна быть отдача, какая-то неизвестная отдача с импульсом р. Именно она заставляет вагон откатиться назад. Скорость вагона v при такой отдаче должна быть равна импульсу отдачи, поделенному на массу М:
Вагон движется с этой скоростью до тех пор, пока свет не достигнет противоположного конца. Ударяясь, свет отдает импульс вагону и останавливает его. Если х мало, то время, в течение которого вагон движется, равно l/c, так что мы
Подставляя х в (27.22), находим
Снова получилось соотношение между энергией и импульсом света. Деля это на с, находим плотность импульса g=p/c, и опять
(27.23)
Вас может удивить, так ли уж важна теорема о центре масс. Может быть, она нарушается? Возможно, но тогда вы теряете и закон сохранения момента количества движения. Предположим, что наш вагончик движется по рельсам с некоторой скоростью и, и мы «выстреливаем» какое-то количество световой энергии от потолка к полу, например из точки А в точку В (фиг. 27.8). Посмотрим теперь на момент количества движения относительно точки Р. До того как порция энергии U покинула точку А, у нее была масса m=U2/c и скорость v, так что ее момент количества движения был равен mvra. Когда же она прилетела в точку В, масса ее остается прежней, и если импульс всего вагона не изменился, то она по-прежнему должна иметь скорость v.
Фиг. 27.8. Для сохранения момента количества движения относительно точки Р порция энергии U должна нести импульс U/c.
Однако момент количества движения относительно точки Р будет уже mvrB. Таким образом, если вагону при излучении света не передается никакого импульса, т. е. если свет не переносит импульса U/c, то момент количества движения должен измениться. Оказывается, что в теории относительности сохранение момента количества движения и теорема о центре масс тесно связаны между собой. И если неверна теорема, то нарушается и закон сохранения момента количества движения. Во всяком случае, общий закон должен быть справедлив и для электродинамики, так что им можно воспользоваться для получения импульса поля.
Упомянем еще о двух примерах импульса в электромагнитном поле. В гл. 26, §2, мы говорили о нарушении закона действия и противодействия для двух заряженных частиц, движущихся перпендикулярно друг другу. Силы, действующие на эти частицы, не уравновешивают друг друга, так что действие и противодействие оказываются неравными, а полный импульс вещества поэтому должен изменяться. Он не сохраняется. Но в такой ситуации изменяется и импульс поля. Если вы рассмотрите величину импульса, задаваемую вектором Пойнтинга, то она оказывается непостоянной. Однако изменение импульса частицы в точности компенсируется импульсом поля, так что полный импульс частиц и поля все же сохраняется.
Второй наш пример — система заряда и магнита, изображенная на фиг. 27.6. К своему огорчению, мы обнаружили, что в этом примере энергия «бегает по кругу», но, как нам теперь известно, поток энергии и импульса пропорциональны друг другу, поэтому здесь мы имеем дело с циркуляцией импульса. Но циркуляция импульса означает наличие момента количества движения. Поле обладает моментом количества движения. Помните парадокс с соленоидом и зарядами на диске, описанный в гл. 17, § 4? Казалось, что при включении тока весь диск должен начать крутиться.