что будет просто алгебраическим преобразованием. Если движение электрона периодическое, то величина хх периодически возвращается к одному и тому же значению. Так что если мы возьмем среднее значение ее производной по времени, то получим нуль. Однако второй член всегда положителен (как квадрат величины), так что его производная тоже положительна. Соответствующая ему мощность как раз равна выражению (28.10).
Итак, слагаемое с x"'; в выражении для силы самодействия необходимо для сохранения энергии излучающей системы и не может быть выброшено. Это было одним из триумфов теории Лоренца, доказавшего возникновение такого слагаемого в результате воздействия электрона самого на себя. Мы вынуждены поверить в идею самодействия и необходимость слагаемого с х"'. Проблема в том, как сохранить его, избавившись при этом от первого слагаемого в выражении (28.9), которое портит все дело. Этого мы не знаем. Как видите, классическая теория электрона сама себя завела в тупик.
Были предприняты и другие попытки выправить положение. Один путь был предложен Борном и Инфельдом. Состоит он в очень сложном изменении уравнений Максвелла, так что они перестают быть линейными. При этом можно сделать так, чтобы энергия и импульс оказались конечными. Но предложенные ими законы предсказывают явления, которые никогда не наблюдались. Их теория страдает еще и другим недостатком, к которому мы придем позднее и который присущ всем попыткам избежать описанную трудность.
Следующая интересная возможность была предложена Дираком. Он рассуждал так: давайте допустим, что действие электрона на себя описывается не первым слагаемым выражения (28.9), а вторым. И тогда ему пришла заманчивая идея избавиться ог первого слагаемого, сохранив при этом второе. Смотрите — сказал он,— когда мы брали только запаздывающие решения уравнений Максвелла, это условие выступало как дополнительное предположение; если бы вместо запаздывающих мы взяли опережающие волны, то ответ получился бы несколько другим. Выражение для силы самодействия приобрело бы вид
Это выражение в точности такое же, как и (28.9), за исключением знака перед вторым и некоторыми высшими членами ряда. [Замена запаздывающих волн опережающими означает просто смену знака запаздывания, что, как нетрудно видеть, эквивалентно изменению знака t. В выражении (28.9) это приводит только к изменению знака всех нечетных производных.] Итак, Дирак предложил: давайте примем новое правило, что электрон действует на себя полуразностью создаваемых им запаздывающих и опережающих полей. Полуразность выражений (28.9) и (28.12) дает
Во всех высших членах радиус а входит в числитель в положительной степени. Поэтому, когда мы переходим к пределу точечного заряда, остается только один член — как раз тот, который нам нужен. Таким путем Дирак сохранил радиационное сопротивление и избавился от силы инерции. Электромагнитная масса исчезла, классическая теория спасена, но благополучие это достигнуто ценой насилия над самодействием электрона.
Произвол дополнительных предположений Дирака был устранен, по крайней мере до некоторой степени, Уилером и Фейнманом, которые предложили еще более странную теорию. Они предположили, что точечный заряд взаимодействует только с другими зарядами, но взаимодействие идет наполовину через запаздывающие, наполовину через опережающие волны. Самое удивительное, как оказалось, что в большинстве случаев вы не видите эффекта опережающих волн, но они дают как раз нужную силу радиационного сопротивления. Однако радиационное сопротивление возникает не как самодействие электрона, а в результате следующего интересного эффекта. Когда электрон ускоряется в момент t, то он влияет на все другие заряды в мире в поздний момент t'=t+r/c (где r — расстояние до других зарядов) из-за запаздывающих волн. Но затем эти другие заряды действуют снова на первоначальный электрон с помощью опережающих волн, которые приходят к нему в момент t", равный t' минус r/c, что как раз равно t. (Они, конечно, воздействуют и с помощью запаздывающих волн, но это просто соответствует обычным «отраженным» волнам.) Комбинация опережающих и запаздывающих волн означает, что в тот момент, когда электрон ускоряется, осциллирующий заряд испытывает воздействие силы со стороны всех зарядов, которые «приготовились» поглотить излученные им волны. Вот в какой петле запутались физики, пытаясь спасти теорию электрона!
Я расскажу вам еще об одной теории, чтобы показать, до каких вещей додумываются люди, когда они увлечены. Это несколько другая модификация законов электродинамики, которую предложил Бопп.
Вы понимаете, что, решившись изменить уравнения электромагнетизма, можно делать это в любом месте. Вы можете изменить закон сил, действующих на электрон, или можете изменить уравнения Максвелла (как это будет сделано в теории, которую я собираюсь описать) или еще что-нибудь. Одна из возможностей — изменить формулы, определяющие потенциал через заряды и токи. Возьмем формулу, которая выражает потенциалы в некоторой точке через плотности токов (или зарядов) в любой другой точке в ранний момент времени. С помощью четырехвекторных обозначений для
потенциалов мы можем записать ее в виде
(28.13)
Удивительно простая идея Боппа заключается в следующем. Может быть, все зло происходит от множителя 1/r под интегралом. Предположим с самого начала, что потенциал в одной точке зависит от плотности зарядов в любой точке как некоторая функция расстояния между точками, скажем как f(r12). Тогда полный потенциал в точке 1 будет определяться интегралом по всему пространству от произведения jm на эту функцию
Вот и все. Никаких дифференциальных уравнений, ничего больше. Есть только еще одно условие. Мы должны потребовать, чтобы результат был релятивистски инвариантным. Так что в качестве «расстояния» мы должны взять инвариантное «расстояние» между двумя точками в пространстве-времени. Квадрат этого расстояния (с точностью до знака, который несуществен) равен
Так что для релятивистской инвариантности теории функция должна зависеть от s12 или, что то же самое, от s212. Таким образом, в теории Боппа
(Интеграл, разумеется, должен браться по четырехмерному объему dtzdxzdy2dz2.)
Фиг. 28,4. Функция F(s2), используемая в нелокальной теории Боппа.
Теперь остается только выбрать подходящую функцию F. Относительно нее мы предполагаем только одно, что она повсюду мала, за исключением области аргумента вблизи нуля, т. е. что график F ведет себя подобно кривой, изображенной на фиг. 28.4. Это узкий пик в окрестности s2=0, шириной которого грубо можно считать величину а2. Если вычисляется потенциал в точке 1, то приближенно можно утверждать, что заметный вклад дают только те точки 2, для которых s212 = с2(t2-t1)2-r212 отличается от нуля на ±a2. Это можно выразить, сказав, что F важно только для
(28.16)
Если понадобится, можно проделать все математически более строго, но идея вам уже ясна.
Предположим теперь, что а очень мало по сравнению с размерами обычных объектов типа электромоторов, генераторов и тому подобное, поэтому для обычных задач г12>>а. Тогда выражение (28.16) говорит, что в интеграл (28.15) дают вклад только те токи, для которых t1-t2 очень мало:
Но поскольку а2/r212<<1, то квадратный корень приближенно равен 1 ±а2/2r212, так что
В чем здесь суть? Полученный результат говорит, что для Аm. в момент t1важны только те времена t2, которые отличаются от него на запаздывание r12/c с пренебрежимо малой поправкой, ибо r12>>а. Другими словами, теория Боппа переходит в теорию Максвелла при удалении от зарядов в том смысле, что она приводит к эффекту запаздывания.
Мы можем приближенно увидеть, к чему нас приведет интеграл (28.15). Если, зафиксировав r12, провести интегрирование по t2в пределах от -Ґ до +Ґ,то s212 тоже будет изменяться от -Ґ до +Ґ. Но основной вклад даст участок по t2шириной At2=2·а2/2r12с с центром в момент t1-r12/c.Пусть функция F(s2) при s2=0 принимает значение К, тогда интегрирование по t2дает приблизительно KjmDt2, или