Прямым доказательством того, что в формировании образов участвует параллактический кортикальный механизм, подобный голограмме Фурье, являются результаты экспериментов, проверенных Кемпбеллом и его сотрудниками (Blakemore and Campbell, 1969; Campbell et al. 1968; Campbell, Cooper and Enroth-Cugell, 1969; Campbell and Robson, 1968). Эти исследования показали, что кора головного мозга может настраиваться на восприятие пространственной информации разного диапазона. Эксперименты -были проведены на кошках и на людях. Предъявлялись решетки с различной контрастностью и изучалось влияние их вращения на зрительные вызванные потенциалы (у человека) и на динамические структуры разрядов, возникающих в нейронах зрительной коры (у кошки). Нейроны отвечали на ограниченную полосу пространственной частоты (в четыре октавы), а длительное рассматривание вызывало подавление контрастной чувствительности за пределами соседних частот (рис. VIII-12). Взаимоотношение между этими экспериментальными результатами и голограммой Фурье лучше всего сформулировано самими авторами.
Рис. VIII-12. Эффект пространственной адаптации на вызванные потенциалы у человека. Синусоидально-волновой узор решетки (12 кол/градус) сдвигался вокруг своей оси на 180° со скоростью 8 раз в сек. Вызванный потенциал зрительной коры суммировался 200 раз на специальном аппарате для получения записей, показанных в рамках слева. Для всех записей стимул был одинаковым. Каждая кривая показывает потенциал для двух фазовых сдвигов пространственной решетки. Первая запись получена при рассмотрении решетки низкой контрастности (верхняя часть справа расположенной панели), составляющей 10 0 ' 7 порогов контрастности для этой пространственной частоты. Затем испытуемый в течение 30 сек рассматривал решетку высокой контрастности (на 1,5 единицы выше порога), после чего немедленно производились записи вызванного потенциала в ответ на повторное предъявление решетки с тем же низкич контрастом. Эта вторая кривая имеет гораздо меньшую амплитуду, чем первая. После 5-минутного периода восстановления предъявление решетки низкой контрастности вновь вызывает запись (3-я рамка), очень сходную с первоначальной. Последняя запись вызванного потенциала на предъявление решетки низкой контрастности после 60 сек экспозиции решетки высокой контрастности не содержит ответа. Отсутствие в записи вызванного потенциала сопровождается попышением субъективного порога (Blakemore and Campbell, 1969).
«В этом исследовании мы намеренно использовали простейший зрительный стимул… Решетка с синусоидально-волновым узором проста потому, что она содержит только одну пространственную частоту, которая представлена в одном меридиане. Наиболее сложным стимулом, исходя из частотного анализа Фурье, является одиночный, резко очерченный круг света, так как он содержит очень широкую полосу пространственных частот и они ориентированы в разных направлениях. Частотная «ширина полосы» индивидуальных пространственных механизмов, выявленная с помощью адаптации, достаточно узка (примерно 1 октава для половины амплитуды). Следовательно, любая сложная световая структура, воздействующая на сетчатку и содержащая широкий спектр компонентов- Фурье, будет активировать многие механизмы. Мы склонны предположить, что структура ответов, получаемых от группы подобных механизмов, может служить для кодирования пространственного содержания определенного сетчаточиого образа и, следовательно, может каким-то неизвестным способом приводить к его идентификации.
Преимущество системы, основанной на частотном анализе, возможно, состоит в том, что она упрощает узнавание знакомых объектов, которые предъявляются непривычно увеличенными. Рассмотрим случай с ребенком, который только что научился различать буквы алфавита, и допустим, что его просят узнать буквы, имеющие разный масштаб увеличения. Он делает это без труда, хотя никогда ранее не видел букв такого размера. Известно, что если мы находимся так близко к предмету, что не можем воспринять его целиком, то он не может быть быстро идентифицирован: «мы не можем видеть за деревьями леса». Сатерленд (1968) дал хороший обзор литературы, посвященной константности величины, и пришел к заключению, что «многие виды обладают способностью воспринимать форму как ту же самую независимо от изменения ее величины, во всяком случав в значительных пределах, и что эта способность врожденная».
Должно быть, существует ограниченный диапазон пространственных величин, которыми зрительная система может управлять легко и быстро. Если она анализирует распределение пространственных частот в объекте лю системе независимых каналов, охватывающих диапазон ее действия, а затем использует соотношение этих частот, чтобы идентифицировать объект, то воспроизведение абсолютной величины объекта было бы излишним для опознания образа, так как отношения внутри гармонического состава не зависят от абсолютной величины. Только этот гармонический состав, должно быть, и фиксируется в системе памяти, и это требует значительно меньшего объема памяти, чем в том случае, если бы распознавание каждого знакомого объекта основывалось на раздельном обучении распознаванию его при каждом изменении его размера. Это явление генерализации величины и, следовательно, расстояния значительно облегчило бы процесс обучения распознаванию образов в нашем естественном окружении. Эта система могла бы быть аналогичной слуховой системе, которая может идентифицировать музыкальные интервалы (отношение частот) независимо от их положения на звуковом спектре…
Такой механизм анализа пространственных частот было бы трудно допустить, если бы он должен был действовать одновременно в двух измерениях. Возможно, имеет большое значение то, что зрительная система также проводит входной сигнал через ряд отдельных избирательно ориентированных каналов, каждый из которых может затем анализировать содержание пространственной частоты объекта в пределах узкого диапазона пространственной ориентации… Хотя такая организация вела бы к дальнейшей экономии объема памяти, она имела бы свой недостаток: ни один из каналов был бы не ограничен в распознавании знакомых объектов, лишь при условии их предъявления при ранее заученной ориентации.
Вот доказательство.
Мы не в состоянии описать явление генерализации ориентации так же хорошо, как мы можем это сделать в отношении размера объекта» (Blake-more and Campbell, 1968, p. 257-259).
Другая линия доказательств основана на том опыте, который мы все имеем. Можно вспомнить и представить себе множество мельчайших подробностей, когда мы оказываемся в соответствующей обстановке – например, приехав в район, где мы жили много лет назад, мы вспоминаем магазины, расположение дверей, мебель в гостиной, которые еще несколько часов назад казались забытыми навсегда. Какой механизм может действовать лучше, чем ассоциативное припоминание, которое обеспечивается голографическим процессом?
Конечно, побудительные импульсы, извлекающие образы из памяти, исходят не от рецепторов. Как я уже отмечал и буду подробно говорить об этом в гл. XVII и XVIII, возбуждение так называемых ассоциативных зон мозга может вызывать во входных каналах динамические структуры возбуждения, аналогичные тем, которые вызываются сенсорными раздражениями. Однако 'Образы, которые предположительно возникают при таком возбуждении, как правило, легко отличить от образов, вызываемых возбуждением рецепторов. Лишь в таких особых условиях, как временная сенсорная депривация, дифференциация внутреннего и" внешнего механизмов формирования образов нарушается, вызывая появление различных иллюзий и галлюцинаций. Однако сам факт, что образы такого типа возникают и формирование их имеет сходство с процессом восприятия, свидетельствует о том,, что восприятие само по себе в значительной степени является реконструктивным. Какой иной процесс, кроме процесса реконструкции образа посредством голографии, может выполнить эту функцию?
Главной зоной реконструкции зрительных образов является стриарная область затылочной коры. Известно, что люди, подвергшиеся двустороннему удалению затылочной доли, полностью лишены зрительных образов (Konorski, 1967). Периферическое разрушение не вызывает такого эффекта в слуховой модальности. Прекрасным примером этого может служить Бетховен. Несмотря на периферическое нарушение слуха, он сохранил достаточное воображение, чтобы написать Девятую симфонию и поздние квартеты.
Другие данные, согласующиеся с голографической гипотезой,, получены в экспериментах с электрической стимуляцией проекционной области зрительной коры человека (Brindley and Lewin, 1968). Такая стимуляция, если в ней закодирована только интенсивность и не закодированы фазовые отношения, вызывает появление пятен света, выглядящих подобно «звездам в небе» и не похожих на линии или углы. Когда такие пятна возникают в стороне от точки фиксации взора, они становятся слегка удлиненными подобно «зернам риса». Наиболее периферические восприятия выглядят подобно «облаку» и имеют «величину горошин, которые рассматриваются со значительного расстояния». Эти образы появляются на постоянных участках зрительного поля. Однако в результате стимуляции через несколько-отдельных электродов у испытуемого можно вызвать видение-простых зрительных структур. При произвольных движениях глаз воспринимаемые пятна света движутся вместе с глазами; при рефлекторных движениях, вызываемых вестибулярной стимуляцией, воспринимаемые пятна света остаются фиксированными в пространстве. Иногда после очень сильной стимуляции зрительные образы сохраняются в течение одной-двух мипут. Все-эти удивительные наблюдения предполагают существование некоторого механизма, помимо механизма детекции признаков, необходимого для построения весьма сложных зрительных образов,, воспринимаемых нами в повседневной жизни.