Но поскольку положительная обратная связь ускоряет реакцию системы на изменение входного сигнала, организм использует ее в определенных ситуациях, когда требуется быстрая реакция в ответ на изменение внешних параметров. Положительные обратные связи играют позитивную роль усилителей процессов жизнедеятельности. Особую роль они играют для роста и развития. В частности, положительная обратная связь преобладает в период эмбрионального развития, ибо такая связь необходима для создания и развития новых структур, новых органов.
Наличие обратных связей является важной стороной управления в живых системах. Принцип обратных связей является одним из основных принципов самоуправления, саморегуляции и самоорганизации. Без наличия обратных связей процесс самоуправления невозможен.
Об эволюционной химии
Концепция ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности была предложена французским естествоиспытателем Луи Пастером в конце XIX века и остается основополагающей и сегодня. В связи с этим чрезвычайно важным оказалось исследование ферментов и раскрытие тонких механизмов их действия.
Ферменты – это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, то есть в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты – это биологические катализаторы.
Основатель органической химии, шведский ученый Йенс Якоб Берцелиус был первым ученым, осознавшим исключительно высокую упорядоченность и эффективность химических процессов в живых организмах. Именно он впервые установил, что основой основ живого организма является катализ, а точнее биокатализ[37], то есть присутствие в химической реакции различных природных веществ (биокатализаторов), способных управлять ею, замедляя или ускоряя ее протекание. Эти биокатализаторы в живых системах определены самой природой. Возникновение и эволюция жизни на Земле была бы невозможны без существования ферментов, служащих, по сути дела, живыми катализаторами.
Встал вопрос о возникновении органической жизни, который является одним из самых интересных и сложных вопросов современного естествознания.
В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химики не интересовались вопросом происхождения вещества, потому что получение любого нового химического соединения всегда было делом рук и разума человека.
Постепенное развитие науки XIX века привело к детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. И в середине XX века появилась эволюционная химия как высший уровень развития химического знания, наука о самоорганизации химических систем. В ее основу заложен принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, то есть к самоорганизации[38] химических систем.
Под эволюционными проблемами понимаются проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.
Теория самоорганизации, говоря словами выдающегося советского химика В. И. Кузнецова, «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». По сути, речь идет об использовании химического опыта живой природы.
Каким образом природа в результате химических соединений образовала сложнейший высокоорганизованный комплекс – биосистему? Ответить на этот вопрос означает объяснить, каким образом природа из минимума химических элементов и соединений создала сложнейшие макромолекулы, а затем высокоорганизованный комплекс биосистем.
Для того чтобы элементарные частицы могли объединиться в атомы, должны были соблюдаться жесткие условия, характеризующиеся так называемыми фундаментальными постоянными.
Для нашей планеты таких фундаментальных постоянных четыре: скорость света в вакууме С = 299792,458 км/с; заряд и масса электрона; постоянная Планка, связывающая свойства волны и частицы, которая составляет 6,626 × 10–34 Дж/с.
Причем случись изменение значения хотя бы одной из фундаментальных постоянных в ту или другую сторону на бесконечно малую долю процента – и жизнь на Земле никогда бы не возникла.
Для того чтобы создать сложнейшие макромолекулы, необходимо было провести отбор химических элементов.
В настоящее время известно более 100 химических элементов, однако, основу живых систем составляют только шесть элементов, получивших название органогенов С, Н, О, N, Р, S (углерод, водород, кислород, азот, фосфор, сера), общая весовая доля которых составляет 97,4 %. За ними следуют еще 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: Na, K, Ca, Mg, Mn, Fe, Si, Al, Cl, Cu, Zn, Co (натрий, калий, кальций, марганец, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт). Их весовая доля в организмах менее 1,6 %.
Об отборе свидетельствует и общая химическая картина мира. В настоящее время известно около 8 миллионов химических соединений. Из них подавляющее большинство (около 96 %) – это органические соединения, основной строительный материал, в которых все те же 6 + 12 элементов.
Интересно, что из остальных химических элементов Природа создала лишь около 300 тысяч неорганических соединений. Принцип отбора действует и далее. Так из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Далее, из 100 известных аминокислот в состав белков входят только 20. Важно отметить, что из такого узкого круга отобранных природой органических веществ сформировался весь труднообозримый мир живого.
Каковы же принципы отбора химических соединений – своеобразной «химической подготовки» к образованию сложнейших биологических систем? Выяснилось, что определяющая роль здесь принадлежит катализаторам, то есть веществам, активирующим молекулы реагентов и повышающим скорость химических реакций.
Этот процесс ныне представляется следующим образом.
1. На ранних стадиях химической эволюции мира катализ отсутствовал. Условия высоких температур (выше 5 тысяч градусов по Кельвину[39]), электрические разряды и радиация препятствуют образованию конденсированного состояния.
2. Проявления катализа начинаются при снижении температуры ниже 5 тысяч градусов по Кельвину и образовании первичных тел.
3. Роль катализатора возрастала (но пока еще незначительно) по мере того, как физические условия (главным образом температура) приближались к современным земным значениям. Появление аминокислот и первичных сахаров было своеобразной некаталитической подготовкой старта для большого катализа.
4. Роль катализа в развитии химических систем после достижения стартового состояния, то есть известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой. Отбор активных соединений происходил в природе из тех продуктов, которые получились относительно большим числом химических путей и обладали широким каталитическим спектром.
В 60-х годах XX века было экспериментально установлено, что в ходе химической эволюции отбирались те химические структуры, которые способствовали резкому повышению активности и избирательной способности катализаторов. Это позволило профессору МГУ А. П. Руденко в 1964 году выдвинуть теорию саморазвития открытых каталитических систем, которая в развернутой форме появилась в 1969 году и была названа теорией эволюционного катализа.
Профессор А. П. Руденко считал, что единственной формой диалектического перехода от неживого вещества к живому среди всех возможных процессов развития материального мира является биогенез, или эволюционная химия, приводящая к возникновению жизни! [13].
Теория эволюционного катализа
Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы, а не молекулы.
При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой.