В таблице приведены характерная частота гравитационного излучения и частота событий для некоторых возможных источников.
Амплитуда сигналов от некоторых из этих источников в сравнении с проектной и имеющейся чувствительностью антенн обсуждается ниже.
Грвитационно–волновой фон ранней Вселенной. До сих пор мы рассматривали локализованные источники, которые могут произвести излучение достаточной силы, чтобы быть зарегистрированными гравитационно–волновыми детекторами Но, конечно, ясно, что любые массы, достаточно несимметричные, при вращениях излучают гравитационные волны, все произвольные гравитационно связанные системы тел при относительном движении излучают и т. д. То есть вся Вселенная погружена в океан гравитационных волн, состоящий из волн посильнее или послабее. Все это вместе образует гравитационноволновой фон Вселенной.
Но среди всего этого океана более интересна та его часть, которая была сгенерирована в раннюю эпоху эволюции Вселенной Почему? Мы уже говорили о реликтовом нейтринном излучении, которое должно быть, но пока не зарегистрировано; о реликтовом электромагнитном излучении, которое образовалось (стало свободным) после рекомбинации водорода и, являясь очень важным носителем информации о той эпохе, активно исследуется со времени его открытия. Аналогично должно существовать реликтовое гравитационное излучение. Его формирование относится ко времени значительно более раннему, чем формирование нейтринного и, тем более, электромагнитного реликтового фона, а именно, 10–37–10–35 с, или ранее. Это соответствует энергиям 1016 ГэВ, может даже большим. В эту эпоху ещё невозможно различить электромагнитное, слабое и сильное взаимодействия, а гравитационное уже становится независимым.
В отличие от электромагнитных, реликтовые гравитационные волны чрезвычайно слабо взаимодействуют с веществом. Это очень важно для космологии, поскольку означает, что они несут «чистую» (без искажений) информацию о самых ранних стадиях развития Вселенной. С другой стороны, до сих пор не зарегистрированы гравитационно–волновые сигналы от локальных источников, которые считаются перспективными. Трудностей в регистрации реликтового гравитационного излучения не меньше, однако надежды на успех есть. Тогда изучение таких гравитационных волн станет мощным инструментом для исследований физики элементарных частиц и всей физики вообще вплоть до энергий 1016 ГэВ.
Важную информацию должен нести спектр ранних гравитационных волн. Из‑за расширения Вселенной и частота гравитационной волны, и её амплитуда меняются. Частота всегда уменьшается. А амплитуда может как расти, так и уменьшаться. Однако есть момент, начиная с которого амплитуда волны только уменьшается. Это момент, когда длина волны и размеры горизонта частиц Вселенной сравниваются. Таким образом, есть конкретная связь между частотой волны и температурой эпохи. Современные детекторы, работающие на частотах около 1 кГц, могли бы изучать состояние Вселенной при температурах 1011 ГэВ. В параметрах гравитационных волн этой частоты должна быть «закодирована» информация о характеристиках плазмы эпохи этой температуры.
Существуют разные возможности для формирования гравитационных волн в ранней Вселенной. Одна из них — это так называемое сверхадиабатическое усиление гравитационных волн. Этот механизм был предложен в 1974 году известным космологом Леонидом Грищуком (1941–2012). Он приводит к усилению реально существующих волн или даже рождению гравитонов (гипотетических квантовых частиц, соответствующих гравитационному полю) из вакуума. Идея состоит в параметрическом возбуждении колебаний гравитационного поля, связанного со специальным соотношением параметров расширяющейся Вселенной. В некотором смысле, можно сказать, что механизм работает, когда параметры Вселенной входят в «резонанс» с колебаниями поля. Значительный гравитационно–волновой фон мог сформироваться во время стадии инфляции. Безразмерная амплитуда каждой волны в момент равенства длины волны размерам горизонта приблизительно равна 10–5, Со временем эти волны могут усиливаться на других этапах эволюции Вселенной. В теории существуют различные сценарии развития этого фона. В современную эпоху он должен иметь широкий спектр: от 1 ГГц до 1017 Гц. В оптимистическом варианте среднее значение метрических вариаций в диапазоне приёма гравитационных антенн (100–1000 Гц) ожидается на уровне h ~ 10-24 при очень узкой полосе приёма ∆f = 3·10-8 Гц.
Гравитационно–волновой фон ранней Вселенной мог бы также сформироваться во время, так называемой, нестационарной доменной стадии. Предполагается, что в эту эпоху Вселенная представляет собой некие «соты», то есть состоит из отдельных областей, каждая из которых описывается разными значениями одного и того же параметра — направления анизотропного натяжения. Этот параметр связан с одним из фундаментальных свойств Вселенной — бар ион ной асимметрией, то есть чрезвычайным преобладанием вещества над антивеществом.
Одно из свойств доменной модели состоит в том, что давление в доменах разное и разнонаправленное. Неопределённость направления анизотропного давления, нестабильность и, наконец, распад доменной стадии приводят к образованию стохастического (случайного) гравитационно–волнового фона. По разным оценкам характеристики этого излучения на настоящий момент могут быть следующими: усреднённая частота — примерно 10-4 Гц, а усреднённая безразмерная амплитуда — примерно 10-20.
Возможности детектирования гравитационных волн, в том числе и реликтового гравитационного фона, обсуждаются далее.
Детектирование гравитационных волн
Я сразу узнаю удачу, едва она появится…
Жюльетта Бенцони «Марианна в огненном венке»
Из сказанного выше об астрофизических источниках можно сделать вывод, что безразмерные амплитуды гравитационных волн, которые мы имеем шанс зарегистрировать на Земле (или в окрестности Земли), h ~ 10–21. Может быть «случайно» амплитуда окажется и больше, но ориентироваться нужно, скорее, на ещё меньшую. Напомним, что h — это та характеристика, которая определяет изменение в измерении физической (реальной) длины: ∆l/l ≈ h/2. Так вот, если такая гравитационная волна пройдёт, то метровый стержень изменит свою длину всего на ∆l ≈ 10–19 см. Для сравнения — порядок размера атомов 10-8 см.
Принцип обнаружения гравитационных волн основан на физическом воздействии на пробные тела. Есть два вида детекторов: твердотельные антенны и лазерные интерферометры. При прохождении гравитационной волны рабочий элемент детекторов первого типа должен деформироваться, а в детекторах второго типа должно изменяться взаимное положения свободных масс (зеркал).
Твердотельные детекторы стали создаваться с середины 1960–х годов. Пионером этих разработок по праву можно считать американского физика Джозефа Вебера (1919–2000). Вебер прожил яркую неординарную жизнь. В 1940 году закончил Военно–морскую академию США, активно участвовал во второй мировой войне на различных кораблях. На службе изучал радиоэлектронику, в 1948 году ушёл в отставку и стал профессором по инженерии в Мэрилендском университете в Колледж–Парке. Но приняли его на условии, что он быстро защитит диссертацию. Так и случилось, в 1951 году Вебер защитил диссертацию «Микроволновые методы в химической κинетике». Во время этой работы была выдвинута идея о возможности получения когерентного стимулированного микроволнового излучения (мазера). Позднее эти идеи разрабатывались Николаем Басовым (1922–2001) и Александром Прохоровым (1916–2002) и американским физиком Чарльзом Таунсом. Они построили первые действующие модели мазеров и лазеров и получили Нобелевскую премию по физике 1964 года.
В 1950–х Вебер заинтересовался ОТО. В то время под сомнением было само существование гравитационных волн, которое, в основном, развеялось к 1960–м годам Вебер построил первый тип гравитационных детекторов — резонансные антенны. Это алюминиевые цилиндры массой около тонны; они могут колебаться, в основном, в продольном направлении, при этом деформации максимальны на торцах. Уже с конца 1960–х годов Вебер начал публиковать статьи, в которых утверждал, что обнаружил гравитационные волны. Это вызвало сенсацию, научные группы по всему миру начали строить аналогичные детекторы. Но никто не смог подтвердить эти результаты.
Наконец, утверждения Вебера были опровергнуты практически всеми другими исследователями. Вебер, однако, продолжал настаивать. Противостояние завершилось серией писем, которыми стороны обменялись в конце 1970–х. Оппонентами утверждалось, что сообщения Вебера выглядят «безумными, потому что вся энергия Вселенной должна была бы полностью перейти в гравитационное излучение примерно за 50 миллионов лет, если бы действительно детектировалось то, что детектирует Джо Вебер». Хотя утверждения Вебера о детектировании гравитационных волн не соответствовали действительности, он признается отцом направления гравитационно–волновой астрономии. В его честь названа премия в области астрономического инструментария.