Рейтинговые книги
Читем онлайн Удивительная биология - И. Дроздова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 63

Плохо переносят живые существа и снижение магнитной напряженности. Если поместить некоторые бактерии в слабое магнитное поле, их численность резко сокращается. Мыши при длительном пребывании в «немагнитной среде» быстрее умирают, не дают потомства.

В экспериментах с животными было выяснено: магнитные сигналы воспринимаются непосредственно мозгом. «Мы-то искали, – пишет доктор биологических наук Ю. Холодов, – орган чувств, с помощью которого воспринимается магнитное поле, а на поверку вышло, что этим деликатным делом занимается сам мозг, минуя органы чувств, которые ему только мешают. Если вживить электроды в разные участки головного мозга и записать их электрическую активность при действии магнитного поля, то окажется, что реакция возникнет во всех отделах, но наиболее интенсивной она будет в гипоталамусе и в коре головного мозга. Видимо, магнитное поле влияет на обмен веществ нервной ткани, а эти отделы мозга наиболее чувствительны к его изменению». Итак, в первые моменты магнитное поле влияет прежде всего на функции центральной нервной системы, но позже, возможно, его действие скажется и на работе других органов, клетки которых также отличаются высоким уровнем обмена веществ.

Как известно, процессы, протекающие в организмах, сопровождаются электрическими импульсами – биотоками. А там, где есть ток, появляется и электромагнитное поле. Есть оно и у бактерий, и у каждой былинки, и у каждого человека. Бьется наше сердце, напрягаются мышцы рук, передается информация в мозг – все это связано с биотоками и магнитными полями.

Но если с биотоками ученые знакомы уже достаточно хорошо, то электромагнитные поля в живых организмах долго не давали о себе знать. Причина теперь известна: чтобы обнаружить их, требуются весьма чувствительные приборы. В середине 70-х гг. ХХ в. один из таких приборов был сконструирован в Ленинградском университете сотрудниками физиологической лаборатории под руководством профессора П. Гуляева. Новое «вооружение» науки сразу же принесло успех. Впервые на расстоянии было зафиксировано электромагнитное поле бьющегося сердца. Уловил прибор и поле работающей мышцы. На расстоянии десятков сантиметров зарегистрировали электромагнитное поле изолированного нерва лягушки. Даже когда человек причесывал свои волосы, прибор отмечал появления силового поля вокруг головы. Прибор улавливал поля летящей мухи и прыгающей белки, качающихся под ветром деревьев и машущих крыльев птиц. Словом, перед исследователями электромагнитных явлений открылся новый, удивительный мир биомагнетизма. И не только открылся.

Прибор, улавливающий биополе, через усилитель подключили к динамику, и он обрел звук. Биополе нашего сердца издавало глуховатые звуки, подобно старым стенным часам. Биотоки работающих мышц прослушивались как пулеметные очереди. Зазвучали «магнитные голоса» жуков и бабочек, комаров и шмелей… Несомненно, что будущие исследования в области биомагнетизма откроют нам немало интереснейших загадок природы.

О ГЕНАХ, МУТАНТАХ И НЕ ТОЛЬКО

Генетика: чуть-чуть теории

Лет двадцать пять назад мир облетела сенсация. Один американский журналист сообщил, что некий миллионер сделал себе двойника. Ядро из клетки его тела было внесено в оплодотворенную яйцеклетку, у которой было убито собственное ядро, и в положенный срок из этой яйцеклетки развился и родился мальчик. Этот мальчик – точная копия миллионера.

Большинство ученых того времени расценили это сообщение как газетную утку. Хотя такого рода эксперименты проводились на лягушках и мышах, до человека очередь тогда явно еще не дошла и, казалось, в обозримом будущем не дойдет. Но время идет, и в последние годы все чаще появляются сообщения о появлении на свет клонированных младенцев. Однако дело даже не в том, правда это или нет. Нужно ли вообще стремиться к такого рода достижениям? Стоит ли создавать двойников? Может быть, и не стоит. Совершенно невыносимо было бы жить в компании со своими точными копиями, которые имеют весь букет ваших достоинств и недостатков. Нет хуже пытки, чем постоянно смотреться в зеркало. В том-то и счастье наше, что мы все такие разные, такие не похожие друг на друга. Конечно, у нас много общего. У нас у всех по две руки, по две ноги и по одной голове. Но у одного на этой голове волосы светлее льна, у другого – чернее воронового крыла, а у третьего волос вообще нет, лысина. У одного глаза голубые, а у другого – карие.

И это не только у нас с вами. Нет двух совершенно одинаковых собак, кошек. Все совершенно разные, и это очевидно. И если решать, чем велик Чарлз Дарвин, смеем утверждать: он велик не тем, что сказал: «есть эволюция». Об этом говорили и до него. Не тем, что придумал борьбу за существование и естественный отбор. И об этом говорили до Дарвина. Велик он тем, что показал на огромном количестве фактов, что нет двух одинаковых организмов, и именно это внутривидовое разнообразие – причина и источник происхождения видов и изумительной гармонии всего сущего на Земле.

Дарвин показал, что изменчивость животных и растений может быть двух типов: определенная и неопределенная. Определенными он называл изменения, возникающие одновременно у многих организмов под действием факторов внешней среды. Простейший пример определенной изменчивости – обесцвечивание растений при выращивании в темноте. Такие определенные изменения называют модификациями. Но не они служат материалом для эволюции, ибо такие изменения (и Дарвин не раз подчеркивал это) ненаследственны. Наследуется другое: мелкие индивидуальные различия. Именно их Дарвин называл неопределенной изменчивостью, имея в виду, что такие различия существуют всегда среди особей, обитающих в одинаковых условиях, а не вызываются действием какого-либо фактора. Вот они-то и служат материалом для эволюции. Как возникают эти неопределенные изменения, Дарвин не знал. Зато в наше время это известно каждому старшекласснику.

Мы знаем, что наследственная информация у всего живого на Земле записана в двуспиральных молекулах дезоксирибонуклеиновой кислоты (ДНК), в состав которых входят четыре нуклеотида (аденин, гуанин, тимин и цитозин) и дезоксирибоза. Эти молекулы обладают замечательными свойствами. Они могут служить матрицами для точного синтеза как белков с заранее заданными свойствами, так и самих себя. Сейчас нас интересует последнее. Итак, мы знаем, что ДНК способна к точному самокопированию, или редупликации. Каждая спираль молекулы ДНК способна строить из нуклеотидов, присутствующих в клетке, свою копию.

Однако любой процесс копирования информации не гарантирован от опечаток. Совершенно естественно, что такие опечатки возникают при тиражировании генетической информации. Только в этом случае их называют не опечатками, а мутациями.

Какие могут быть опечатки? Давайте рассмотрим пример. Пусть у нас есть слово «кот». Как мы можем ошибиться, печатая его? Мы можем вместо одной буквы напечатать другую. Например, вместо «о» напечатать «и». Аналогичная история произошла в детской сказке Б. Заходера «Кот и Кит». И в результате: «Кот плывет по океану, кит – на печке ест сметану». В генетике такая опечатка называется заменой основания.

Как еще можно ошибиться? Если мы поменяем местами две последние буквы в слове «кот», получим «кто». Такая ситуация называется парацентрической инверсией. А если перевернем все слово и получим «ток», то это – перицентрическая инверсия. Если вставим букву «р», получим «крота» – назовем это инсерцией, или вставкой. Вот, пожалуй, и все возможные варианты опечаток: замена одной буквы другой, потеря буквы, вставка буквы, симметричная перестановка букв. Всем этим грамматическим опечаткам соответствуют определенные генетические опечатки – мутации.

При замене «о» на «и» получается новое животное – кит, а если мы заменим «о» на любую другую букву алфавита, то никакого нового зверя не возникнет, получится глупость, бессмысленный набор букв. Теперь прикинем вероятность появления нового смысла при замене оснований: 1/32. Для инверсий эта оценка будет несколько выше – 3/6, для инсерций – 3/32. В общем, вы видите, что в большинстве случаев мы получаем в результате опечаток бессмыслицу.

То же самое и в большей степени справедливо для мутационного процесса. Большинство мутаций приводит к искажению генетической информации, несовместимому с нормальной жизнедеятельностью. Но все-таки пусть мало, но есть опечатки, которые имеют смысл, причем смысл, отличный от исходного. Вот они-то и являются причиной той самой неопределенной изменчивости, о которой писал Дарвин. Они являются причиной того, что «кот» превращается в «кита». Между процессами тиражирования печатной и генетической продукции есть еще одно важное сходство. Вероятность опечатки резко возрастает, если вы печатаете, будучи больным или усталым, или если у вас над ухом галдят дети, или, наконец, ваша машинка неисправна (вспомните машинку с турецким акцентом в «Золотом теленке»).

1 ... 45 46 47 48 49 50 51 52 53 ... 63
На этой странице вы можете бесплатно читать книгу Удивительная биология - И. Дроздова бесплатно.
Похожие на Удивительная биология - И. Дроздова книги

Оставить комментарий