У полупроводников энергетическая щель между самой высокой из заполненных зон (валентной) и самой низкой из незаполненных (проводимости) — мала. Поэтому небольшого повышения температуры достаточно, чтобы перенести электроны из валентной зоны в зону проводимости. При этом обе они оказываются частично заполненными, и полупроводник становится проводником электрического тока. Электропроводность может быть существенно повышена добавкой различных примесей.
Но возникает вопрос — а есть ли вещества, занимающие промежуточное положение между металлами и полупроводниками, то есть такие, у которых энергетическая щель равна нулю и в то же время нет частично заполненных зон? Впервые утвердительный ответ дали советские физики. В тридцатые годы молодые теоретики С. Вонсовский и С. Шубин продемонстрировали это с помощью простой модели, а в 1955 году И. Цидильковским было обнаружено первое вещество такого типа — теллурид ртути. В последующие годы найден целый ряд бесщелевых проводников (так стали называть новые вещества) и началось их интенсивное изучение.
Оказалось, что бесщелевые полупроводники обладают свойствами, отличающими их от металлов, полупроводников или изоляторов. Прежде всего тут значительную роль играет взаимодействие электронов. Их свойства при низких температурах оказались не в ладу с обычной теорией, и пришлось применить совсем новые методы для характеристики этих объемов.
Еще одна особенность — электроны в таких полупроводниках легко отбирают энергию от внешнего источника и «нагреваются». При этом меняется распределение электронов в веществе. В результате ток растет с увеличением электрического поля значительно быстрее, чем следует из закона Ома. Кроме того, электроны в таких полупроводниках в тысячи раз подвижней, чем в кремнии — наиболее популярном в настоящее время полупроводнике. А это определяет чувствительность и рабочие параметры электронных устройств.
Необычно ведут себя в этих полупроводниках и примеси. Некоторые из них уже при очень малой концентрации приводят к образованию дополнительных, так называемых примесных зон. Это создает очень своеобразную зависимость электропроводности от нагревания: при повышении температуры она сначала увеличивается, затем падает, а потом опять возрастает. Бесщелевые полупроводники демонстрируют также ряд удивительных свойств в магнитном поле и в инфракрасном излучении.
К полупроводникам такого рода примыкают вещества, у которых в обычном состоянии есть энергетическая щель. Однако ее можно «закрыть» путем внешнего воздействия. Это достигается изменением состава, как, например, в соединениях висмута с сурьмой, а также сжатием или приложением магнитного поля. В таких случаях говорят о бесщелевом состоянии.
Исследование веществ с малыми энергетическими щелями дало возможность обнаружить еще целый ряд новых состояний — так называемые экситонные фазы. Если из валентной зоны перевести один электрон в зону проводимости, то пустое место — «дырка» — в валентной зоне подобно положительному заряду. Вместе с электроном она может образовать заряженный комплекс — экситон, напоминающий атом водорода. При уменьшении энергетической щели могут создаться условия, когда экситоны начнут образовываться самопроизвольно — вещество переходит в экситонную фазу.
Исследования советских физиков показали, что в природе есть целый ряд веществ с необычными свойствами, которые можно объяснить, рассматривая их как экситонные фазы. Это так называемые полуметаллы — металлы с очень малым числом носителей тока и очень своеобразной кристаллической структурой и, по-видимому, ряд ферромагнетиков.
Однако было интересно убедиться не только в том, что экситонные фазы могут существовать, но и проследить переход в такое состояние. Теоретическая догадка получила экспериментальное подтверждение. Эти фазы были обнаружены у сплавов висмута с сурьмой при комбинированном воздействии сильных магнитных полей, давления и низких температур.
Эти исследования не только обогатили и расширили представления об энергетической структуре твердых тел, и указали новые пути получения материалов, которые будут иметь значительные и, возможно, весьма необычные с точки зрения сегодняшнего дня технические применения.
ПРАВОЕ И ЛЕВОЕ В МИРЕ АТОМОВ
Вот что рассказали академик С. Беляев, академик Б. Понтекорво и член-корреспондент АН СССР И. Гуревич.
До середины пятидесятых годов в физике существовала твердая уверенность в том, что описание явления не зависит от того, наблюдается ли оно непосредственно или в зеркале. Иными словами, правое и левое совершенно равноправны. Об этом говорят как о законе сохранения четности. Но уже в 1956 году было обнаружено несохранение четности в слабых взаимодействиях. Это можно считать одним из крупнейших открытий в физике нашего времени.
Здесь придется сделать маленькое отступление. Слабое взаимодействие можно описать как проявление сил, преобразующих пару одних частиц в другую пару частиц. Если суммарный электрический заряд таких пар отличен от нуля, говорят, что взаимодействие осуществляется через заряженные токи. Оно как раз и приводит к бета-распаду ядер. Если суммарный заряд пары равен нулю, говорят о взаимодействии, вызванном нейтральными токами.
Еще в 1959 году академик Я. Зельдович обратил внимание на то, что если нейтральные токи существуют, то должны возникать чрезвычайно малые эффекты несохранения четности в атомах. Затем поиски нейтральных токов оказались в центре внимания физики элементарных частиц, поскольку их существование определенно предсказывалось одной из теоретических моделей, единым образом описывающих электромагнитные и слабые взаимодействия. В 1973 году нейтральные токи были обнаружены в процессах взаимодействия нейтрино с ядрами. В том же году французские физики М. и К. Бушья заметили, что эффекты несохранения четности, обусловленные нейтральными токами, усиливаются в тяжелых атомах и что их поиски становятся реальной экспериментальной задачей. Они же предложили искать эти эффекты в очень маловероятном электромагнитном атомном переходе в цезии.
Летом 1974 года сотрудник Института ядерной физики в Новосибирске И. Хриплович для той же цели предложил другой эксперимент, заключающийся в поиске поворота плоскости поляризации света, прошедшего через пары тяжелых металлов, в частности висмута. Поворот плоскости поляризации в таких условиях означает неэквивалентность правого и левого направлений вращения. Л. Барков и М. Золоторев начали в том же институте подготовку эксперимента с висмутом. Почти одновременно этот опыт был предложен и начат в Оксфорде (Англия) и. Сиэтле (США).
Первая трудность при проведении такого эксперимента заключается в том, что измерять нужно ничтожно малые углы, составляющие примерно одну миллионную долю градуса. Это угол, на который нужно повернуть километровый стержень вокруг оси, проходящей через один из его концов, чтобы другой конец сместился на сотую долю миллиметра! Другая сложная проблема, вставшая перед новосибирскими физиками, — необходимость экранировать объем с парами висмута от случайных внешних магнитных полей. Наконец, очень трудно создать эффективную схему контроля надежности в столь тонком эксперименте.
Хотелось бы передать ту атмосферу напряженного ожидания, которая сложилась в ходе экспериментов. Ведь результаты опытов определяли отношение к. единой теории электромагнитного и слабого взаимодействий всех физиков, работающих в этой области, включая, разумеется, и авторов теории Вайнберга, Салама и Глэшоу. По своему значению унификация слабых и электромагнитных процессов может быть сравнима с теорией Максвелла, объединившей электрические и магнитные явления.
Первыми опубликовали результаты эксперимента оксфордская и сиэтлская группы, которые не обнаружили эффекта. Новосибирская группа в это время упорно работала над устранением ложных аппаратурных эффектов и добилась успеха. В январе 1978 года Барков и Золоторев впервые уверенно наблюдали вращение плоскости поляризации света в парах висмута. Это было первым наблюдением несохранения четности в атомах, первым наблюдением слабого взаимодействия электронов с протонами и нейтронами, обусловленного нейтральными токами. Новые серии измерений позволили количественно подтвердить предсказания величины эффекта, следующие из единой теории электромагнитных й слабых взаимодействий.
Это было трудное время для новосибирских физиков, поскольку их измерения резко противоречили результатам других групп опытных ученых. Поддержка новосибирского результата пришла из эксперимента совсем другого типа. В июне 1978 года группа физиков, работавшая на двухмильном линейном ускорителе в Стэнфорде (США), сообщила о наблюдении несохранения четности при рассеянии электронов большой энергии на дейтерии.