Проверка ОТО на масштабах планетных систем
Теперь вспомним, что основой ОТО как метрической теории является принцип эквивалентности и постулат движения по геодезическим. Известно, что этим основам, если они установлены с абсолютной точностью, удовлетворяют лишь «чисто» метрические теории (с небольшими оговорками), т, е. теории, где гравитационное поле представлено только метрическим тензором. Оказывается, что ОТО это лишь простейший вариант метрической теории. Нисколько не нарушая этих основ, можно представить бесчисленное (без преувеличения) множество метрических теорий. Как тогда можно изменить теорию? За что же зацепиться в этом случае? Конечно, лишь эксперимент и наблюдения могут поставить все на место. Но для классификации альтернативных предложений нужна своя стратегия.
Работу над стандартным формализмом для проверки альтернативных моделей гравитации начал ещё в 1922 году Артур Эддингтон (1882–1944). Усовершенствование этого формализма, так или иначе, продолжалось на протяжении десятилетий, а закончили дело американские физики Клиффорд Уилл и Кеннет Нордведт в 1972 году. Ими предложен так называемый параметризованный пост–ньютоновский (ΡΡΝ) формализм. Он создан для теорий либо чисто метрических, либо с эффективной метрикой, представляющей искривлённое пространство–время, где происходят физические взаимодействия. Рассматриваются лишь отклонения от механики Ньютона, поэтому формализм применим только в слабых полях. В общем случае существует 10 ΡΡΝ–параметров. В случае ОТО 2 из них равны единице, а остальные 8 — нулю.
Чем полезен ΡΡΝ–формализм в проверке ОТО? Новые технологии позволяют достаточно точно отслеживать движения небесных тел, и современная стандартная проверка происходит следующим образом. С помощью уравнений ОТО именно в ΡΡΝ виде рассчитываются траектории тел в Солнечной системе. Этот вид оказывается наиболее конструктивным. Затем их сравнивают с данными наблюдений. Современный результат таков, что соответствие теоретических ΡΡΝ параметров ОТО наблюдаемым подтверждается с точностью от десятых до сотых долей процента — это очень высокая точность.
Другие точные тесты — это наблюдения двойных пульсаров: систем, состоящих из двух нейтронных звёзд, их известно сейчас около десятка. Кроме этого, есть системы, состоящие из радиопульсара и белого карлика, они тоже подходят для тестов. На основании этих наблюдений вычисляются параметры орбит. Оказывается, что отклонения от кеплеровских значений совпадают с отклонениями, предсказанными ОТО, также с точностью до десятых и сотых долей процента. Специалисты испытывают большой оптимизм в перспективах повышения точности при изучении именно двойных пульсаров. Он основан на том, что нейтронные звезды имеют размеры в десятки километров в системах с размерами орбит в миллионы километров. В таких системах звезды фактически являются точечными объектами. Их внутреннее строение, внутренние движения, а также деформации практически не влияют на траектории. В отличие от этого, в Солнечной системе все эти факторы, а также влияние многочисленных «соседей» существенно ограничивают повышение точности. Резюмируя, можно сказать, что на масштабах планетных систем ОТО подтверждена с высокой точностью и точность измерений будет повышаться.
Необходимость модификации ОТО
Надо жизнь сначала переделать,
переделав — можно воспевать.
Владимир Маяковский
Однако исследования по созданию теорий альтернативных ОТО, в большей части как раз метрических, не прекращаются, Почему? ОТО хорошо подтверждается, как только что было сказано, на масштабах Солнечной системы. Проверить теорию на больших или меньших масштабах существенно сложнее. ОТО, как и любая другая теория, всего лишь модель для описания реальных явлений. Поэтому реальная природа может совпадать с предсказаниями ОТО на масштабах планетных систем, но отличаться на других масштабах.
Вместе с этим, многие современные теоретические и эмпирические данные говорят о том, что так и должно быть, и модификации необходимы. Например, во многих решениях ОТО необходимо рассматривать сильные гравитационные поля, огромные плотности и т. д. А это требует квантования гравитационного поля. Несмотря на значительные усилия, решающего успеха на этом поприще добиться не удалось. Это наводит на мысль, что на малых масштабах, где требуется квантование, гравитационная теория должна быть изменена С другой стороны, недавнее открытие ускоренного расширения Вселенной многие ведущие специалисты склонны интерпретировать как геометрический эффект, который можно «получить», модифицировав ОТО на космологических масштабах, Независимо от этого, к необходимости изменений ОТО на больших и малых масштабах приводят результаты исследований в физике фундаментальных взаимодействий.
Если говорить о жизнеспособных теориях, то нет установившейся терминологической разницы для альтернативных, модифицированных или новых теорий. Все они, так или иначе, развивают ОТО, поскольку должны работать не хуже на тех масштабах, где она подтверждается. Разрабатывая модификации ОТО или новые теории, авторы сравнивают их с ОТО в соответствующих режимах точно так же, как ОТО сравнивается с гравитацией Ньютона. Если угодно, должен быть удовлетворён все тот же принцип соответствия, но на новом витке познания.
В настоящее время на многих конференциях по теории гравитации обобщённым (или альтернативным) теориям посвящаются целые секции, по этой тематике выходят отдельные сборники, некоторые теории становятся все более и более самостоятельными. Каковы же основные наиболее популярные и перспективные направления в этих разработках?
Во–первых, ОТО является чисто метрической (или чисто тензорной) теорией. Это означает, что геометрия пространства–времени и материя воздействуют друг на друга без посредников. Таких теорий можно построить бесконечно много (о чем мы уже говорили), и они активно разрабатываются. Как правило, уравнения этих теорий отличаются от уравнений ОТО тем, что они дополняются квадратичными и более высокого порядка по кривизне слагаемыми. Дополнительные члены обычно входят с малыми коэффициентами, которые обеспечивают согласие с наблюдениями, скажем, на масштабах планетных систем, но существенно изменяют решения на космологических масштабах.
Другой класс альтернативных теорий характеризуется тем, что воздействие друг на друга геометрии и материи осуществляется через дополнительное поле, чаще всего это скалярное или векторное поле. Однако вклад этих полей не может быть существенным. Отклонение современных альтернативных теорий от ОТО должно выразиться в разнице соответствующих ΡΡΝ параметров. Чтобы оценить жизнеспособность отличной от ОТО теории (проверить её) необходимо регистрировать отклонения от значений ΡΡΝ параметров в ОТО на уровне 10–6–10–8. Это означает, что точность измерений, как в Солнечной системе, так и в двойных пульсарах, должна быть улучшена на 1–3 порядка.
Теория гравитации Хоржавы
Эта теория является одним из вариантов векторнотензорных теорий гравитации и, пожалуй, самая популярная на настоящий момент. Именно поэтому мы рассказываем о ней. Теория была предложена в 2009 году американским теоретиком-струнником» чешского происхождения Петром Хоржавой. Она несколько отличается от обычных векторно–тензорных теорий, поскольку в ней вместо векторного поля используется градиент скалярного. С одной стороны, сохраняются свойства векторных теорий, с другой — есть специфические собственные полезные свойства.
Ещё раз вспомним, что непротиворечивую квантовую теорию гравитации, в которой не было бы расходимостей, на основе ОТО создать не удалось. Поэтому предлагаются различные модификации, которые на квантовых масштабах существенно расходятся с ОТО и становятся «подходящими» для квантования. Для этого при их построении некоторые принципы, лежащие в основе ОТО, изменяются, т. е. оказываются нарушенными. Конечно, это нарушение должно быть настолько незначительным, чтобы не противоречить лабораторным тестам, и чтобы не изменилось действие теории на масштабах планетных систем, где есть хорошее соответствие с наблюдениями. Именно такой является теория Хоржавы, Мы не будем рассказывать насколько она замечательна в смысле квантования, это несколько в стороне от темы книги, зато расскажем о её свойствах как гравитационной теории — в чем и насколько они отличны от аналогичных свойств ОТО.
Лоренц–ннвариантность. Мы уже обсуждали тот факт, что ОТО как бы «выросла» из специальной теории относительности — механики высоких скоростей, сравнимых со скоростью света. Напомним, что в СТО все инерциальные системы отсчёта, движущиеся относительно друг друга равномерно и прямолинейно, эквивалентны. Важно вспомнить об измерениях времени в СТО. В каждой инерциальной системе отсчёта часы идут в своём собственном темпе, отличном от темпа часов других систем, если их сравнивать. Однако нельзя выбрать ни «лучший», ни «худший» темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.