Цель этой работы показать, как интересный статистический тип закона, контролирующий события большого масштаба, складывается из динамических законов, которые, по-видимому, управляют событиями малого масштаба — взаимодействием единичных атомов и молекул. Последний тип закона иллюстрируется механическими явлениями большого масштаба, как, например, движение планет, часов и т. д.
Таким образом, оказывается, что «новый принцип» — принцип «порядок из порядка», который мы провозгласили с большой торжественностью в качестве действительного ключа к пониманию жизни, совсем не нов для физики. Планк даже восстанавливает его приоритет. Мы, кажется, приближаемся к смехотворному выводу, будто бы ключ к пониманию жизни заключается в том, что она имеет чисто механический характер и основана на принципе «часового механизма» в том смысле, который придает этому выражению Планк.
Этот вывод не представляется нелепым и, на мой взгляд, не совсем ошибочен, хотя его и следует принимать с большой осторожностью.
Движение часов
Давайте тщательно проанализируем движение реальных часов. Это не чисто механический феномен. Чисто механические часы не нуждались бы ни в пружине, ни в заводе. Раз пущенные в ход, они двигались бы бесконечно. Реальные часы без пружины останавливаются после нескольких движений маятника, его механическая энергия превращается в тепло. А это бесконечно сложный, атомистический процесс. Общее представление о нем, которое складывается у физика, вынуждает признать, что обратный процесс также вполне возможен: часы без пружины могут неожиданно начать двигаться вследствие затраты тепловой энергии своих собственных зубчатых колес и окружающей среды. В этом случае физик должен был бы сказать: часы испытывают исключительно интенсивный пароксизм броуновского движения.
Будем ли мы относить движение часов к динамическому или статистическому типу закономерных явлений (употребляя выражения Планка), зависит от нашей точки зрения. Называя это движение динамическим, мы обращаем внимание на его регулярность, которая может быть обеспечена сравнительно слабой пружиной, преодолевающей незначительные нарушения теплового движения, которыми мы можем пренебречь. Но если мы вспомним, что без пружины часы вследствие трения постепенно остановятся, то поймем, что этот процесс может быть истолкован только как статистическое явление.
Каким бы практически незначительным ни было трение и нагревание в часах, все же не может быть сомнения, что вторая точка зрения, которая не пренебрегает ими, более основательна, даже если мы имеем дело с регулярным движением часов, приводимых в движение пружиной. Ибо не следует думать, что движение механизма, в самом деле, полностью исключает статистическую сторону процесса. Истинная физическая картина не исключает того, что даже точно идущие часы могут неожиданно повернуть свое движение вспять и завести свою собственную пружину за счет потери тепла окружающей средой. Это событие все же немногим менее вероятно, чем броуновский пароксизм для часов, совсем не имеющих заводного механизма.
Работа часового механизма, в конечном счете, имеет статистический характер
Давайте теперь рассмотрим создавшееся положение. «Простой» случай, который мы проанализировали, служит типичным примером многих других, по существу всех, которые на первый взгляд не попадают под действие всеохватывающего принципа молекулярной статистики. Часы, сделанные из реальной физической материи (в отличие от воображаемых), не будут «реальным часовым механизмом». Элемент случайности может быть более или менее снижен: вероятность того, что часы неожиданно пойдут и пойдут совершенно неправильно, может быть бесконечно малой, но в основе она всегда будет. Трение и тепловое влияние сопровождают даже движение небесных тел. Так, вращение Земли постепенно замедляется приливным трением и вместе с этим Луна постепенно удаляется от Земли, чего не случилось бы, если бы Земля была совершенно твердым вращающимся шаром.
Тем не менее, остается фактом, что «реальные часовые механизмы» ясно проявляют весьма выраженные черты «порядка из порядка», то есть такие, которые взволновали бы физика, если бы он столкнулся с ними в организме. Кажется вероятным, что оба случая, в конце концов, имеют нечто общее. Остается рассмотреть, в чем заключается это общее и одновременно поразительное различие, которое делает организм в конечном счете беспрецедентным.
Принцип Нернста
Когда же физическая система — любой вид ассоциации атомов — следует «динамическому закону» (в том значении, которое придавал ему Планк) или обнаруживает «черты часового механизма»? На этот вопрос квантовая теория дает краткий ответ: при температуре абсолютного нуля. При приближении к этой температуре молекулярная неупорядоченность перестает влиять на физические явления. Это было, между прочим, обнаружено при исследовании химических реакций в широких температурных границах и при последующей экстраполяции результатов на фактически недостижимую температуру, равную абсолютному нулю; это и есть знаменитый термодинамический принцип Вальтера Нернста, который иногда, и не без основания, называют третьим законом термодинамики (первый — принцип сохранения энергии, второй — принцип энтропии).
Квантовая теория дает обоснование эмпирическому закону Нернста и позволяет определить, как близко данная система должна подойти к абсолютному нулю, чтобы выявить черты "динамического" поведения. Какая же температура в каждом отдельном случае практически эквивалентна нулю?
Так вот, не следует думать, что это должна быть всегда очень низкая температура. Действительно, открытие Нернста было подсказано тем фактом, что даже при комнатной температуре энтропия играет удивительно незначительную роль во многих химических реакциях. (Напомню, что энтропия является прямой мерой молекулярной неупорядоченности, а именно ее логарифмом).
Маятниковые часы фактически находятся при нулевой температуре.
Для маятниковых часов комнатная температура практически эквивалентна нулю. Это причина того, что они работают «динамически». Они будут продолжать идти, если их охлаждать (конечно, при условии, что удалена смазка), но остановятся, если их нагревать выше комнатной температуры, ибо в конце концов они расплавятся.
Сходство между часовым механизмом и организмом.
То, что будет сказано ниже, хотя и кажется весьма тривиальным, но, я думаю, достигнет цели. Часы способны функционировать «динамически», так как они состоят из твердых тел, форма которых удерживается гайтлер-лондоновскими силами достаточно прочно, чтобы избежать тенденции теплового движения к нарушению порядка при обычной температуре.
Теперь, я думаю, надо немного слов, чтобы определить сходство между часовым механизмом и организмом. Оно просто и исключительно сводится к тому, что в основе последнего лежит твердое тело — апериодический кристалл, образующий наследственное вещество, не подверженное воздействию беспорядочного теплового движения.
Но, пожалуйста, не ставьте мне в вину, что я будто бы называю хромосомные нити «зубцами органической машины», по крайней мере, не делайте этого без ссылки на те глубокие физические теории, на которых основано сходство, Потому что, действительно, не нужно большого красноречия, чтобы напомнить основное различие между ними и оправдать для биологического случая эпитеты — новый и беспрецедентный.
Наиболее поразительными различиями являются, во-первых, своеобразное распределение «зубцов» в многоклеточном организме и, во-вторых, то, что отдельный зубец — это не грубое человеческое изделие, а прекраснейший шедевр, когда-либо созданный по милости господней квантовой механики.
О детерминизме и свободе воли.
В награду за труд по изложению чисто научной стороны нашей проблемы sine ira et studio83 я прошу теперь разрешить мне высказать собственный, неизбежно субъективный взгляд на философское значение вопроса.
Из того, что было изложено выше, ясно, что протекающие в теле живого существа пространственно-временные процессы, которые соответствуют его мышлению, самосознанию или любой другой деятельности (даже если учесть их сложность и современное статистическое объяснение физико-химии), если не вполне строго детерминированы, то во всяком случае статистически детерминированы. Для физика я хочу подчеркнуть, что вопреки мнению некоторых других ученых квантовая неопределенность, по моему мнению, не имеет принципиального значения для биологических процессов. Она может только повышать роль случайности в таких явлениях, как мейоз, естественные и искусственно вызванные Х-лучами мутации и т. д., что вполне понятно и достаточно хорошо известно.