Многие заказчики и пользователи операционной аналитики не понимают аналитики или не испытывают к ней интереса. Их заботит только возможность решения проблемы. Убедите их в том, что аналитика поможет решить их проблему, но не углубляйтесь в технические подробности. Если же людей перегрузить информацией, они могут вообще отказаться от выполнения предложенного им решения.
Многие из нас не желают вникать в детали непонятного нам явления. Например, большинство людей не хотят вникать в то, как работает двигатель автомобиля и почему после нажатия на педаль газа топливо подается в карбюратор. Обычно человек просто хочет знать, что, если он нажмет на педаль газа, автомобиль поедет вперед. С операционной аналитикой дела обстоят точно так же, когда ее пользователями становятся люди, не желающие вникать в принципы ее работы.
Операционная аналитика просто должна быть частью предлагаемого вами решения проблемы. Если вы продемонстрируете, что найденное решение приносит нужные результаты, то уже осчастливите заказчиков и пользователей. Им не понадобится вникать в детали. А будут ли конечные пользователи полностью разбираться в стоящей за решением аналитике или принимать ее, это действительно не важно. Если вы помните, в первой главе мы рассматривали пример с логистической компанией, которая решила уменьшить ежедневный километраж для своих водителей службы доставки. Многие водители с пренебрежением отнеслись к компьютерным рекомендациям, поскольку оказалось, что при более вдумчивом подходе они смогли найти способы сократить километраж еще больше и превзойти компьютерную программу. Таким образом, рекомендации бросили вызов водителям – и заставили их изменить свое поведение. Даже если водители не поняли, что именно аналитика инициировала изменения, главное, что изменения произошли.
Подведем итоги
Наиболее важные положения этой главы:
• Операционная аналитика должна опираться на прочный фундамент пакетной аналитики. По-прежнему применим и традиционный аналитический процесс.
• Организация должна иметь возможность применять и сочетать различные аналитические дисциплины, чтобы, помогая друг другу, они позволяли улучшать результаты.
• Платформа для обнаружения данных – лучшее место для применения к проблеме мультидисциплинарного подхода.
• Постановка правильных вопросов в начале построения аналитического процесса сильнее воздействует на результаты, чем вся последующая работа.
• Если фактические значения могут отличаться от исходных предположений, примените анализ чувствительности для оценки потенциального воздействия такого расхождения на результаты.
• Невозможно проанализировать все и вся. Однако если упускается что-то важное, критика задним числом неизбежна. Всегда документируйте процесс принятия решений с указанием того, почему были выбраны одни пути для анализа и не выбраны другие.
• Исследовательский анализ направлен на поиск ответа на более общие вопросы в условиях широкой свободы действий, тогда как подтверждающий анализ с самого начала носит конкретный и жестко заданный характер.
• Аналогично тому, как тест-кухни ищут новые рецепты, организации должны использовать аналитические НИОКР для поиска новых аналитических процессов. Эти усилия должны рассматриваться не как бездумное хакерство, а как продуманное размещение ставок.
• Выведение аналитики на операционный уровень иногда требует частичного отказа от аналитической мощности в обмен на требуемую масштабируемость. Необходимо оптимизировать не каждое отдельное решение, а влияние процесса на все решения.
• Методы классической статистики, включая выборки, по-прежнему сохраняют свою актуальность. Россказни о том, что они устарели, будут опровергнуты.
• Изощренные решения могут усиливать, а не контролировать проблемы с данными, особенно когда они применяются к низкокачественным – разреженным и неполным – данным. В действительности простые решения способны работать лучше, одновременно обеспечивая необходимую масштабируемость.
• Заказчики и пользователи операционной аналитики часто не разбираются в аналитике и не интересуются ею. Главное для них – получить решение проблемы. Вдаваясь в технические подробности, когда вас об этом не просят, вы рискуете отпугнуть людей от аналитики.
Глава 8
Аналитическая команда
Если организация хочет поставить операционную аналитику себе на службу и получать от нее весомую отдачу, ей надо для этого подобрать нужных людей. Кроме того, надо правильно их организовать и обеспечить им условия для успешной работы. В большинстве случаев – за исключением разве что некоторых развитых в плане использования аналитики компаний – придется изменить и существующие организационные структуры. Тематику, связанную со специалистами-аналитиками и аналитическими командами, я рассмотрел в своей книге «Укрощение больших данных». В этой главе я хочу добавить еще несколько важных соображений и новую информацию. Итак, давайте рассмотрим некоторые ключевые действия по набору, организации и управлению аналитической командой, способной обеспечить успешное применение операционной аналитики.
Произошел серьезный сдвиг
Сегодня я с удивлением наблюдаю за тем, как расширяются карьерные возможности для профессиональных аналитиков. Более 20 лет назад, после окончания аспирантуры, я отчетливо понимал, что моя профессиональная судьба – оставаться «ботаником», обитающим в дальних закоулках офисов. Время от времени меня будут выпускать из подвала, но бóльшую часть времени я буду сочинять в кулуарах умнейшие аналитические отчеты. Такова была участь специалистов по аналитике в те времена, и я с ней смирился.
С улыбкой вспоминаю, как на моей первой работе мне приходилось разговаривать с кем-то, кто мог поговорить с кем-то, кто мог поговорить с кем-то, кто принимал решения. Я находился на приличном удалении и от лиц, принимающих бизнес-решения, и от ИТ-отдела. Ввиду места, которое моя команда занимала в организации, и наших условий для работы наше влияние было весьма ограниченным. Например, разработанный мной анализ для прогнозирования ухода клиентов осуществлялся в режиме пакетной обработки и только для немногих конкретных точек принятия решений. Аналитика не была интегрированным компонентом деятельности организации (впрочем, как и я со своей командой) и тем более не была операционной.
Сегодня специалисты по аналитике постоянно сидят за одним столом вместе с принимающими решения лицами. И, более того, зачастую сами являются такими лицами. Какая огромная перемена по сравнению со стартом моей карьеры! Я пришел в аналитику по одной простой причине: она мне нравилась. Хотелось бы заявить, что я с самого начала предвидел будущее, но не могу себе этого позволить. Мне просто повезло, что я выбрал одну из самых востребованных сегодня профессий.
Аналитика не только воскресла из небытия, но и впала в противоположную крайность. Такие авторитетные издания, как Harvard Business Review, CNNMoney и Forbes, сегодня пишут о профессии аналитика как не только о востребованной, но и привлекательной{72}. После того как годами я пытался объяснить людям на вечерниках, чем зарабатываю себе на жизнь, не особо пугая их подробностями, мне забавно, что меня, благодаря моему роду занятий, стали считать умным, пусть и непривлекательным.
Вследствие этой вновь обретенной (и, возможно, мимолетной) популярности появилось упражнение, которое я хотел бы порекомендовать моим коллегам. Вечером, перед тем как лечь в постель, остановитесь на мгновение перед зеркалом, посмотрите на себя и скажите: «Я специалист-аналитик, и я привлекателен». Впервые в вашей жизни другие люди могут согласиться с этим утверждением.
Еще совсем недавно, в 2012-м, когда мы обсуждали с организациями их аналитические стратегии, они обычно упирались в вопрос, а нужно ли им вообще нанимать специалистов-аналитиков. Это всегда обескураживало меня, поскольку мне как профессионалу хотелось, чтобы все остальные считали нашу профессию ценной и не ставили под сомнение необходимость нашего найма.
Аналитические организации никуда не денутсяВ последние годы произошел серьезный сдвиг. Вместо того чтобы задавать вопрос, нужны ли им вообще аналитические таланты, сегодня организации озабочены тем, как из имеющихся у них талантов создать команды и расширить их влияние. Это говорит о том, что в настоящее время ценность профессиональных аналитиков осознана, а их роли расширяются.
С тех пор ситуация примечательным образом изменилась. Начиная с 2013 г. многие организации стали обращаться ко мне и спрашивать не о том, нужно ли им нанимать специалистов-аналитиков, а о том, как создать команду из имеющихся профессионалов. В этом виден большой прогресс, поскольку он отражает два важных факта. Во-первых, во многих компаниях сегодня достаточно много аналитических талантов, вследствие чего приходится задумываться о том, как их организовать. Во-вторых, и это столь же важно, упор на создание аналитических команд говорит о том, что они никуда уже не денутся. Вот в чем состоит серьезный сдвиг и воодушевляющая тенденция.