Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Ещё один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби–Яу. Это явление с трудом поддаётся визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свёрнутых измерениях, расположение отверстий и то, как многообразие Калаби–Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн даёт основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например, почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свёрнутые в пространства Калаби–Яу.
Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведённые в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут однажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развёрнутых и свёрнутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину 1 или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби–Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свёрнутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн даёт схему, объясняющую существующий набор частиц, переносящих взаимодействие, т. е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби–Яу свёрнуты дополнительные измерения, мы не можем сделать определённых предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации).
Почему мы не можем установить, какое из многообразий Калаби–Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближённые вычисления в рамках формализма, известного под названием теории возмущений. В этой приближённой схеме все возможные многообразия Калаби–Яу выглядят равноправными; ни одно из них не выделяется уравнениями. Поскольку физические следствия теории струн существенно зависят от точной формы свёрнутых измерений, не имея возможности выбрать единственное пространство Калаби–Яу из многих возможных, нельзя сделать определённых заключений, поддающихся экспериментальной проверке. Современные исследования нацелены на разработку теоретических методов, выходящих за рамки приближённого подхода, в надежде, что помимо других выгод это выделит единственное многообразие Калаби–Яу для дополнительных измерений. В главе 13 мы рассмотрим прогресс, достигнутый в этом направлении.
Перебирая возможности
Вы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби–Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые даёт каждое возможное многообразие Калаби–Яу, и соберём их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьёзные причины, по которым на него нельзя дать исчерпывающего ответа.
Разумно было бы начать исследование, ограничившись только теми пространствами Калаби–Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведённой в нижней части рис. 9.1. Аналогично можно взять пространство Калаби–Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби–Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путём таких плавных деформаций, и учитывали такие группы как одно пространство Калаби–Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно зависят от подобных детальных изменений вида многообразия, а у нас, опять же, нет критериев для того, чтобы отдать одной из этих конкретных возможностей предпочтение перед другими. И неважно, сколько аспирантов усадят за эту работу профессора физики, невозможно перебрать все альтернативы, соответствующие бесконечному списку различных пространств.
Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нём; здесь показан один из таких способов
Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби–Яу. Но даже в этом случае ситуация остаётся непростой. Приближённые уравнения, используемые учёными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую даёт выбранное многообразие Калаби–Яу. Эти уравнения позволяют значительно продвинуться вперёд в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определённые физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближённые схемы. Вспомните главу 6 и пример с «Верной ценой», где говорилось, что «естественным» мерилом энергии в теории струн является планковская энергия, и только благодаря необычайно точному механизму сокращений теория струн способна дать моды колебаний, массы которых близки к массам известных частиц вещества и частиц, переносящих взаимодействие. Искусные сокращения требуют точных расчётов, поскольку даже небольшие погрешности могут оказать большое влияние на результат. Как мы увидим в главе 12, в середине 1990-х гг. физики смогли добиться значительного прогресса в выходе за рамки современных приближённых уравнений, хотя сделать предстоит ещё немало.
Итак, где же мы находимся? Да, мы столкнулись с проблемой отсутствия фундаментального критерия выбора конкретного многообразия Калаби–Яу. Да, у нас нет теоретических средств, необходимых для вывода наблюдаемых характеристик, соответствующих такому выбору. Но мы можем спросить, а есть ли в каталоге пространств Калаби–Яу какие-либо элементы, которые дают картину мира, в основном согласующуюся с наблюдениями? Ответ на этот вопрос звучит достаточно обнадёживающе. Хотя большинство элементов каталога дают картину, которая существенно отличается от нашего мира (в ней, помимо всего прочего, другое число семейств элементарных частиц, а также иные типы и константы фундаментальных взаимодействий), небольшое число многообразий даёт физическую картину, которая на качественном уровне близка к наблюдаемой в реальности. Таким образом, существуют примеры пространств Калаби–Яу, приводящие к колебательным модам струн, подходящим для частиц стандартной модели, если выбирать эти пространства в качестве свёрнутых измерений, существование которых требуется в теории струн. И, что имеет первостепенную важность, теория струн успешно встраивает гравитационное взаимодействие в квантово-механическую схему.