Рейтинговые книги
Читем онлайн Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 105

Когда мы наблюдаем, как объекты движутся по орбитам в космосе, мы открываем другую повторяющуюся форму, показанную на рис. 10.3 – эллипс. Уравнение x2 + y2 = 1 описывает точки, лежащие на окружности, а эллипс – это просто растянутая окружность. В зависимости от начальной скорости, направления движущегося по орбите объекта и массы, вокруг которой он движется, форма этой орбиты может оказываться растянутой или наклоненной, однако всегда остается эллипсом. Более того, оконечность сильно вытянутого эллипса почти точно совпадает с параболой, так что все эти траектории – просто части эллипсов[64].

Рис. 10.2. Когда вы что-нибудь подбрасываете, траектория полета предмета всегда имеет форму перевернутой параболы, если только он с чем-нибудь не столкнется в полете и если можно пренебречь сопротивлением воздуха.

Рис. 10.3. Когда один объект обращается по орбите вокруг другого под действием гравитации, его орбита всегда имеет одну форму, эллипс, который представляет собой просто окружность, растянутую в одном направлении (так будет, если нет источников трения и если мы игнорируем эйнштейновские поправки к ньютоновской теории гравитации, которые обычно ничтожны, если мы не рядом с черной дырой). Орбита остается эллипсом для самых разных объектов: и для кометы, обращающейся вокруг Солнца (слева), и для белого карлика – мертвой звезды, обращающейся вокруг Сириуса A, ярчайшей звезды нашего неба, и для звезды, обращающийся вокруг гигантской черной дыры в центре Галактики (справа), которая в миллион раз массивнее Солнца. (Рисунок справа воспроизводится с разрешения Рейнхарда Гензеля и Райнера Шедела.)

Рис. 10.4. Подобно тому, как изобразительное искусство и поэзия могут выразить многое с помощью немногих символов, так и физика способна сделать это с помощью уравнений. Слева направо и сверху вниз на этих шедеврах описаны: электромагнетизм, околосветовое движение, гравитация, квантовая механика и расширение Вселенной. Мы еще не нашли уравнений единой «теории всего».

Постепенно люди открыли в природе множество других повторяющихся форм и паттернов, охватывающих не только движение и гравитацию, но и такие разные области, как электричество, магнетизм, свет, теплота, химия, радиоактивность и субатомные частицы. Эти паттерны складываются в законы физики. Как и форму эллипса, эти законы можно описать, применяя математические уравнения (рис. 10.4). Почему?

Числа

Уравнения – не единственный скрытый в природе намек на математику: есть также числа. Я говорю не о творениях рук человеческих, вроде пагинации в этой книге, а о числах, которые выражают фундаментальные свойства нашей физической реальности. Сколько карандашей вы сможете расположить так, чтобы все они были перпендикулярны (под углом 90°) друг другу? Три: их можно разместить, например, вдоль трех стыков стен и пола в углу вашей комнаты. Откуда взялось число 3? Мы называем его размерностью пространства, но почему существует именно 3 измерения, а не 2, 4 или 42? Почему в нашей Вселенной существует (насколько мы можем судить) ровно шесть типов кварков? Есть много других «встроенных» в природу целых чисел (гл. 7), которые описывают, какого типа элементарные частицы существуют.

И, вдобавок к математическим гостинцам, существуют закодированные в природе величины, которые не являются целыми числами и требуют для записи дробных значений. Согласно моим подсчетам, природа закодировала 32 таких фундаментальных числа. Относится ли к ним число, которое появляется на индикаторе весов, когда вы встаете на них после ванны? Нет, оно не в счет, поскольку является мерой чего-либо (вашей массы), что день ото дня изменяется, а значит, не является фундаментальным свойством нашей Вселенной. Что можно сказать о массе протона (1,672622 × 10–27 кг) или о массе электрона (9,109382 × 10–31 кг), которые кажутся неизменными во времени? Они также не в счет, поскольку измеряются в килограммах, а это произвольная единица массы, придуманная людьми. Но если вы разделите одно из этих двух чисел на другое, получится нечто поистине фундаментальное: протон примерно в 1836,15267 раз массивнее электрона[65]. Значение 1836,15267 – безразмерное число, подобное π или √2, в том смысле, что его значение не зависит ни от каких человеческих единиц измерения, вроде граммов, метров, секунд или вольт. Почему это значение так близко к 1836? Почему не 2013? Или не 42? Простой ответ состоит в том, что мы этого не знаем. Но, думаю, в принципе мы можем вывести и это число, и все остальные когда-либо измеренные фундаментальные постоянные природы, всего из 32 чисел, перечисленных в табл. 10.1.

Табл. 10.1. Каждое фундаментальное свойство природы, когда-либо подвергнутое измерению, можно вычислить на основе 32 чисел – по крайней мере в принципе. Некоторые из них измерены с очень высокой точностью, тогда как другие экспериментально еще не определены. Точный смысл этих чисел не имеет значения для нашего изложения, но если вы заинтересовались, то найдете объяснения в моей статье (http://arxiv.org/abs/astro-ph/0511774). Вот только чем определяются значения этих чисел?

Не пугайтесь названий в таблице: они не имеют отношения к тому, чем мы здесь занимаемся. Суть в том, что в нашей Вселенной есть нечто сугубо математическое, и чем пристальнее мы всматриваемся, тем, похоже, больше математики видим. Что касается природных констант, то имеются сотни тысяч безразмерных чисел, измеренных в разных областях физики: от отношения масс элементарных частиц до отношений характерных длин волн света, испускаемого различными молекулами. С помощью компьютеров, достаточно мощных, чтобы решать уравнения, описывающие законы природы, все до одного эти числа, по-видимому, могут быть определены на основе приведенных в табл. 10.1. Некоторые вычисления и измерения крайне сложны, и их до сих пор не удалось выполнить, а когда удастся, то, возможно, числа в теории и эксперименте не совпадут. Такого рода расхождения не раз случались в прошлом и, как правило, разрешались одним из трех способов:

1. Кто-нибудь находил ошибку в эксперименте.

2. Кто-нибудь находил ошибку в вычислениях.

3. Кто-нибудь находил ошибку в наших законах физики.

В последнем случае обычно удавалось найти более фундаментальные законы физики – как тогда, когда замена ньютоновских уравнений для гравитации эйнштейновскими позволила объяснить, почему Меркурий обращается вокруг Солнца не по идеальному эллипсу. Во всех случаях ощущение, что в природе есть нечто математическое, лишь усиливалось.

Если вы откроете еще более точные законы физики, то это может либо сделать число параметров менее 32 (табл. 10.1), позволив вычислить некоторые из этих величин по другим, содержащимся в таблице, – либо увеличить их число за счет добавления новых величин (относящихся, скажем, к массам новых типов частиц, которые, возможно, будут открыты на Большом адронном коллайдере).

Дополнительные улики

Что делать со всеми этими намеками на присутствие математики в нашем физическом мире? Большинство физиков привыкло, что природа по некоей причине описывается математикой, по крайней мере приближенно, и признают это как факт. В книге «Является ли Бог математиком?» астрофизик Марио Ливио заключает, что «ученые выбрали, над какими проблемами им работать, с учетом того, чтобы эти проблемы можно было решать математическими методами». Но я убежден, что причина глубже.

Во-первых, почему математика так успешно описывает природу? Я согласен с Вигнером: это требует объяснения. Во-вторых, на страницах этой книги мы постоянно сталкиваемся с уликами, указывающими на то, что математика не просто описывает природу. В некоторых отношениях природа является математической:

1. В гл. 2–4 мы видели, что сама ткань нашего физического мира, его пространство, является чисто математическим объектом в том смысле, что все неотъемлемые свойства пространства – число измерений, кривизна и топология – являются математическими.

2. В гл. 7 мы видели, что «начинка» нашего физического мира состоит из элементарных частиц, которые, в свою очередь, являются чисто математическими объектами в том смысле, что все их неотъемлемые свойства (приведенные в табл. 7.1 числа, например заряд, спин, лептонное число) являются математическими.

3. В гл. 8 мы видели, что существует нечто, возможно, даже более фундаментальное, чем наше трехмерное пространство с частицами в нем – это волновая функция и бесконечномерное гильбертово пространство, в котором она обитает. Частицы могут создаваться и уничтожаться, а также находиться в нескольких местах одновременно, однако была и всегда будет лишь одна волновая функция, движущаяся по гильбертову пространству в соответствии с уравнением Шредингера. И волновая функция, и гильбертово пространство являются чисто математическими объектами.

1 ... 57 58 59 60 61 62 63 64 65 ... 105
На этой странице вы можете бесплатно читать книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк бесплатно.
Похожие на Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк книги

Оставить комментарий