3. В гл. 8 мы видели, что существует нечто, возможно, даже более фундаментальное, чем наше трехмерное пространство с частицами в нем – это волновая функция и бесконечномерное гильбертово пространство, в котором она обитает. Частицы могут создаваться и уничтожаться, а также находиться в нескольких местах одновременно, однако была и всегда будет лишь одна волновая функция, движущаяся по гильбертову пространству в соответствии с уравнением Шредингера. И волновая функция, и гильбертово пространство являются чисто математическими объектами.
Что все это означает? Позвольте поделиться своим пониманием, и посмотрим, будет ли оно иметь для вас больше смысла, чем для профессора, сказавшего, что это похоронит мою карьеру.
Гипотеза математической Вселенной
К моменту получения университетского диплома я был захвачен всеми этими математическими уликами. Однажды вечером в 1990 году в Беркли я со своим другом Биллом Пуарье рассуждал о фундаментальной природе реальности. Внезапно мне пришло в голову, что наша реальность не просто описывается математикой, но и является математикой в очень специфическом смысле. Не какие-то ее аспекты, а вся целиком, включая нас самих[66]. Эта идея кажется безумной, так что, изложив ее Биллу, я много лет размышлял, прежде чем написать первую статью о ней.
Прежде чем погружаться в детали, вот логическая структура, к которой я прибегаю, размышляя об этом. Во-первых, есть две гипотезы. Первая, гипотеза внешней реальности (ГВР), кажется безобидной:
Существует внешняя физическая реальность, совершенно независимая от людей.
Вторая, гипотеза математической Вселенной (ГМВ), выглядит куда радикальнее:
Наша внешняя физическая реальность является математической структурой.
Во-вторых, у меня есть доказательство того, что при достаточно широком определении математической структуры из первой гипотезы вытекает вторая.
Первое мое допущение, гипотеза внешней реальности, не вызывает серьезных споров: я уверен, что большинство физиков согласно с этой старой идеей. Метафизические солипсисты открыто ее отвергают, а сторонники копенгагенской интерпретации квантовой механики могут отвергать ее на том основании, что не существует реальности без наблюдения. В предположении, что внешняя реальность существует, цель физических теорий состоит в описании того, как она устроена. Наши наиболее успешные теории, например общая теория относительности и квантовая механика, описывают лишь часть этой реальности: гравитацию или, скажем, поведение субатомных частиц. Но Святой Грааль теоретической физики – это «теория всего», исчерпывающее описание реальности.
Уменьшение нормы разрешенного багажа
Мой персональный поиск этой теории начинается с радикального рассуждения о том, на что она имеет право быть похожей. Если мы признаем, что реальность существует независимо от людей, то чтобы ее описание было полным, оно должно также быть корректно определенным для нечеловеческих существ – скажем, инопланетян или суперкомпьютеров, – которые не знакомы с человеческими понятиями. Иначе говоря, такое описание должно выражаться в форме, лишенной всякого человеческого «багажа» вроде понятий «частица», «наблюдение» и других слов естественного языка.
При этом все физические теории, которым меня учили, содержат две компоненты: математические уравнения и «багаж» – слова, объясняющие, как эти уравнения связаны с тем, что мы наблюдаем и интуитивно понимаем. Выводя из теории следствия, мы придумываем для них новые понятия и слова, например протоны, атомы, молекулы, клетки, звезды, поскольку ими удобно пользоваться. Важно помнить, однако, что эти понятия придуманы людьми. В принципе, все может быть вычислено без «багажа». Гипотетический идеальный суперкомпьютер способен вычислить, как состояние Вселенной изменяется во времени, без «человеческой» интерпретации, просто рассчитывая, как будут двигаться все частицы или как будет изменяться волновая функция.
Предположим, что траектория баскетбольного мяча на рис. 10.2 – это один из тех блестящих бросков, которые приносят победу в самый момент звучания финальной сирены, и после игры вы хотите описать другу, как это было. Поскольку мяч состоит из элементарных частиц (кварков и электронов), вы можете описать его движения без всяких упоминаний о баскетбольном мяче:
• Частица № 1 движется по параболе.
• Частица № 2 движется по параболе.
• …
• Частица № 138 314 159 265 358 979 323 846 264 движется по параболе.
Это, однако, неудобно, поскольку время, которое понадобится для произнесения всего этого, превосходит возраст самой Вселенной. Это может быть и избыточно, поскольку все частицы получают толчок вместе и движутся как единое целое. Вот почему люди изобрели слово «мяч»: чтобы ссылаться на эту сущность и экономить время, описывая ее движение как целого. Мяч изготовили люди, но дело обстоит подобным же образом и в случае составных объектов естественного происхождения – молекул, камней, звезд и т. д.: придумывать для них слова удобно и ради экономии времени, и в качестве так называемых сокращающих абстракций, делающих понимание мира проще. Но при всей их полезности такие слова являются необязательным «багажом»: например, я неоднократно использовал в этой книге слово «звезда», однако вы можете в принципе заменить его определением звезды через ее составляющие, скажем таким: «гравитационно связанный сгусток около 1057 атомов, часть которых вступает в термоядерные реакции». Иными словами, в природе есть множество сущностей, которым так и тянет дать название. Наверняка почти каждое человеческое сообщество имеет в языке слово для обозначения звезды, часто придуманное независимо и отражающее местные культурные и лингвистические традиции. Предполагаю, что и большинство внеземных цивилизаций в далеких планетных системах также изобрело название или символ для звезды, даже если они не пользуются для коммуникации звуками.
Другой замечательный факт: нередко можно математически предсказать существование таких заслуживающих имени сущностей, опираясь на уравнения, управляющие их частями. На этом пути можно предсказать всю «легоподобную» иерархию структур (гл. 7), от элементарных частиц до атомов с молекулами, а также все объекты на каждом уровне, которым люди дали запоминающиеся имена. Например, если вы решаете уравнение Шредингера для пяти или менее кварков, то оказывается, что есть лишь два способа, которыми они могут быть достаточно стабильно организованы: либо как сгустки из двух верхних кварков и одного нижнего, либо как сгустки из двух нижних кварков и одного верхнего. Люди ради удобства добавили в свой «багаж» названия для сгустков этих двух типов: протоны и нейтроны. Аналогично, если применить уравнение Шредингера к таким сгусткам, оказывается, что существует лишь 257 способов, которыми они могут быть устойчиво объединены друг с другом. Мы добавили в «багаж» название для этих протон-нейтронных ансамблей – атомные ядра, и придумали названия для каждого их типа: водород, гелий и т. д. Уравнение Шредингера также позволяет вычислить все способы соединения атомов в более крупные объекты, но на этот раз стабильных объектов оказывается настолько много, что всем им давать имена неудобно. Поэтому мы именуем только важные классы таких объектов (молекулы, кристаллы и т. д.) и наиболее распространенные или интересные объекты в каждом классе (вода, графит, алмаз).
Я рассматриваю такие составные объекты как эмерджентные в том смысле, что они возникают как решения уравнений, описывающих более фундаментальные объекты. Их эмерджентность – трудноуловимое свойство, поскольку исторически научный прогресс по большей части шел в противоположном направлении. Так, люди узнали о звездах прежде, чем поняли, что они состоят из атомов; узнали об атомах прежде, чем поняли, что они состоят из электронов, протонов и нейтронов; узнали о нейтронах прежде, чем открыли кварки. Для каждого эмерджентного объекта, который для нас важен, люди собрали «багаж» в форме новых понятий.
Того же характера эмерджентность и накопление человеческого «багажа» видны на рис. 10.5. Я привожу грубую схему организации научных теорий в генеалогическое древо, в котором каждая теория может быть выведена (по крайней мере в принципе) из более фундаментальных. Все эти теории имеют две составляющие: математические уравнения, а также слова, которые объясняют, как уравнения связаны с тем, что мы наблюдаем. Например, квантовая механика, как ее обычно излагают в учебниках, содержит обе компоненты (гл. 8): математическую, такую как уравнение Шредингера, и записанные на естественном языке фундаментальные постулаты вроде утверждения о коллапсе волновой функции. На каждом уровне иерархии теорий вводятся новые понятия (протоны, атомы, клетки, организмы, культуры и т. д.), потому что они удобны и охватывают суть того, что происходит, без обращения к вышестоящей, более фундаментальной теории. Все эти понятия вводят люди: в принципе, все может быть выведено из фундаментальной теории на вершине древа, хотя такой крайний редукционизм на практике обычно бесполезен. Грубо говоря, по мере движения вниз по древу количество слов увеличивается, а уравнений – уменьшается, едва не достигая нуля в таких предельно прикладных сферах, как медицина или социология. Напротив, теории, близкие к вершине, сильно математизированы, и физики с трудом описывают понятия в доступном обывателю виде, если это вообще возможно.