Экзоцитоз представляет собой процесс (будучи также активным транспортом), противоположный по направлению фагоцитозу и пиноцитозу (рис. 13). С его помощью могут выводиться непереваренные остатки пищи у простейших либо образованные в секреторной клетке биологически активные вещества.
Цитоплазма. Цитоплазма – это содержимое клетки, ограниченное плазмалеммой, за исключением ядра. В ее составе выделяют основное вещество (гиалоплазму), органоиды и включения.
Гиалоплазма – вязкая жидкость, способная находиться в состоянии либо золя (жидком), либо геля (студнеобразном).
При необходимости цитоплазма способна обратимо переходить из одного состояния в другое. Например, при амебоидном движении (вспомните раздел «Простейшие» из курса зоологии) в ходе образования ложноножки происходят быстрые переходы цитоплазмы из геля в золь и наоборот. Это обусловлено наличием в цитоплазме большого количества нитевидных молекул из белка актина. Когда они, соединяясь друг с другом, образуют трехмерную сеть, цитоплазма находится в состоянии геля, а когда сеть распадается – в состоянии золя.
В гиалоплазме содержатся различные вещества – ферменты, белки, углеводы, жиры и другие, органические и минеральные. Здесь осуществляются различные химические процессы – расщепление веществ, их синтез и модификации (изменения).
Органоиды. Это постоянные компоненты клетки с определенным строением и функциями, находящиеся в ее цитоплазме. В дальнейшем речь будет идти об органоидах общего назначения, присущих любым типам клеток всех эукариот. С ними связано обеспечение жизнедеятельности последних. Органоиды специального назначения встречаются только в клетках определенного (узкоспециализированного) типа – например, миофибриллы в мышечных клетках.
Органоиды общего назначения имеют одинаковое строение независимо от того, каким клеткам и каких организмов они принадлежат. Но среди них выделяют группы с мембранным (эндоплазматическая сеть, аппарат Гольджи, митохондрии, пластиды, лизосомы, вакуоли), а также немембранным (рибосомы, клеточный центр) строением.
Эндоплазматическая сеть (ЭПС). ЭПС состоит из мембран и представляет собой сложно разветвленную систему канальцев и цистерн, пронизывающую всю цитоплазму клетки (рис. 14). Различают два вида ЭПС – шероховатую и гладкую. К мембранам шероховатой (со стороны цитоплазмы) прикрепляются рибосомы, а на гладкой их нет.
Рис. 14. Эндоплазматическаясеть [1, 7]
Эндоплазматическая сеть выполняет в эукариотной клетке ряд важнейших функций:
♦ разграничивающую (разделение внутреннего объема клетки на различные реакционные пространства);
♦ участие в синтезе органических веществ (на мембранах шероховатой ЭПС располагаются рибосомы, а на гладкой – ферментные комплексы, обеспечивающие синтез липидов, углеводов и т. д.);
♦ участие в формировании элементов аппарата Гольджи, лизосом;
♦ транспорт веществ.
Аппарат Гольджи. Аппарат Гольджи (АГ) представляет собой систему цистерн (плоских вакуолей) и пузырьков (везикул), расположенную в непосредственной близости от ядра клетки, которые образуются за счет ЭПС в результате отделения небольших ее фрагментов (рис. 15). При слиянии этих фрагментов и возникают новые цистерны аппарата Гольджи, при этом из ЭПС транспортируются различные вещества, которые участвуют в сборке сложных органических соединений (белки + углеводы, белки + липиды и т. д.), выводимых с помощью АГ за пределы клетки. Эти биологически активные вещества либо выводятся из клетки (с помощью секреторных вакуолей путем экзоцитоза), либо входят в состав лизосом (см. ниже), образующихся за счет АГ.
Рис. 15. Аппарат Гольджи: <? – в клетке простейшего Euglena; б, в – схематическое трехмерное изображение аппарата Гольджи 11)
Аппарат Гольджи выполняет следующие функции:
♦ синтез биологически активных веществ, вырабатываемых клеткой;
♦ секрецию (выведение из клетки) различных веществ (гормонов, ферментов, веществ, из которых строится клеточная стенка, и т. п.);
♦ участие в образовании лизосом.
Митохондрии. Митохондрии есть у всех типов эукариотных клеток (рис. 16). Они имеют вид либо округлых телец, либо палочек, реже – нитей. Их размеры колеблются от 1 до 7 мкм. Число митохондрий в клетке составляет от нескольких сотен до десятков тысяч (у крупных простейших).
Рис. 16. Митохондрии. Вверху – митохондрии (a) в мочевых канальиах, видимые в световом микроскопе. Внизу – трехмерная модель организации митохондрии: 1 – кристы; 2 – внешняя мембрана; 3 – внутренняя мембрана; 4 – матрикс [7]
Митохондрия образована двумя мембранами – внешней и внутренней, между которыми расположено межмембранное пространство. Внутренняя мембрана образует множество впячиваний – крист, представляющих собой либо пластины, либо трубочки. Такая ее организация обеспечивает огромную площадь внутренней мембраны. На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки. Следовательно, функция митохондрий – участие в энергетических клеточных процессах. Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.
Пластиды. В растительных клетках обнаруживаются особые органоиды – пластиды, имеющие чаще веретеновидную или округлую форму, иногда более сложную. Различают три вида пластид – хлоропласты (рис. 17), хромопласты и лейкопласты.
Хлоропласты отличаются зеленым цветом, который обусловлен пигментом – хлорофиллом, обеспечивающим процесс фотосинтеза, т. е. синтеза органических веществ из воды (Н2О) и углекислого газа (СО2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов – строму. Внутренняя мембрана образует многочисленные уплощенные мешочки – тилакоиды, которые сложены в стопки (наподобие стопки монет) – граны – и лежат в строме. Именно в тилакоидах и содержится хлорофилл.
Хромопласты определяют желтый, оранжевый и красный цвет многих цветков и плодов, в клетках которых присутствуют в большом количестве. Основными пигментами в их составе являются каротины. Функциональное назначение хромопластов состоит в цветовом привлечении животных, обеспечивающих опыление цветков и распространение семян.
Рис. 17. Пластиды: а – хлоропласты в клетках листа элодеи, видимые в световом микроскопе; б – схема внутреннего строения хлоропласта с гранами, представляющими собой стопки плоских мешочков, расположенных перпендикулярно поверхности хлоропласта; в – более подробная схема, на которой видны анастомозируюшие трубочки, соединяющие отдельные камеры фан [7]
Лейкопласты – это бесцветные пластиды, содержащиеся в клетках подземных частей растений (например, в клубнях картофеля), семян и сердцевины стеблей. В лейкопластах, главным образом, происходит образование из глюкозы крахмала и накапливание его в запасающих органах растений.
Пластиды одного вида могут превращаться в другой. Например, при осеннем изменении цвета листьев хлоропласты превращаются в хромопласты.
Лизосомы. Эти органоиды имеют вид пузырьков, окруженных мембраной, диаметром до 2 мкм. Они содержат несколько десятков ферментов, расщепляющих белки, нуклеиновые кислоты, полисахариды и липиды. Функция лизосом – участие в процессах внутриклеточного расщепления сложных органических соединений (например, пищевых веществ или веществ «отработавших» клеточных компонентов). Лизосомы сливаются с фагоцитарными (или пиноцитарными) вакуолями, образуя пищеварительную вакуоль.
Образование лизосом происходит за счет отпочковывания от цистерн аппарата Гольджи.
Рибосомы. Рибосомы (рис. 18) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию в биосинтезе белков (см. главу 5). В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов.
Рис. 18. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 – малая субьединица; 2 – тРНК; 3 – аминоацил-тРНК; 4 – аминокислота; 5 – большая субъединица; 6 – мембрана эндоплазматической сети; 7 – синтезируемая полипептидная цепь [8]