Один очень умный старшеклассник задал учителю такой вопрос: «То, что в равнобедренном треугольнике углы при основании равны, совершенно очевидно, можно убедиться на примерах. Тем не менее нам этот факт доказывают. С другой стороны, то, что напряжение равно силе тока, умноженной на сопротивление, нисколько не очевидно. Однако этот факт нам почему-то не доказывают, а только иллюстрируют опытами. Почему?»
Этот вопрос — редкая попытка проникнуть в суть явлений. Большинство же школьников, я убежден, воспринимают доказательства как некий принятый в математике ритуал. Так полагается, и все. Как тут не вспомнить историю, относящуюся, кажется, к XVIII веку — про человека, который сказал своему учителю: «К чему все эти туманные рассуждения? Вы же дворянин, и я тоже. Дайте честное слово, что теорема верна, — мне этого вполне достаточно».
Смешно, правда? Ну а мы сами — образованные, современные люди, даже научные работники — мы разве не такие?
Где искать точки соприкосновения научной проблемы с миром детства?
Встречали ли вы когда-нибудь в учебниках истории доказательства того, что все описываемые события происходили именно там, именно тогда и именно так, как они описаны (да и вообще имели место)? Нет, никаких даже намеков на доказательства в этих учебниках нет. И вот странное дело — это никак не уменьшает нашего доверия к изложенным фактам. «Честное слово дворянина» — в данном случае автора учебника — оказывается для нас вполне убедительным основанием. Как видим, проблема не так проста, даже если касается взрослых.
А к детям какое это имеет отношение? Вот какое: мне кажется, необходимо осознать проблему в целом, только тогда удастся найти какие-то ключи, какие-то пути и точки соприкосновения этой проблемы с миром детства (курсив мой.?ВЛ).
Важная подсказка методистам и тем родителям, которые хотят понять, чему учить детей, как выбрать учебный материал
В числе первых попыток были задачи из серии «четвертый — лишний» с неоднозначными ответами, о чем я рассказывал в предыдущей статье. В них я обращал внимание детей на важность не только правильного ответа, но и правильного объяснения.
Потом стали появляться задачи на доказательство такого сорта: доказать, что мы видим глазами, а слышим ушами, но не наоборот (доказательство: если закрыть глаза, мы перестанем видеть, а если закрыть уши, перестанем слышать); доказать, что облака ближе к нам, чем солнце (доказательство: облака заслоняют солнце); доказать, что мы думаем головой, а не животом (хорошего решения я так и не смог придумать).
Ну а в нашей комбинаторной задаче что могло бы служить аналогом доказательства? Видимо, только упорядоченный перебор возможностей, то есть такой перебор, при котором мы были бы уверены, что ничего не пропустили. Еще полгода назад мальчики эту идею не восприняли. Может быть, они уже созрели?
Способен ли дошкольник прийти к идее доказательства, если даже не все взрослые владеют ею?
Вернемся к тому обсуждению, рассказ о котором прервали на полуслове. Итак, как же убедиться, что, кроме найденных десяти решений, других нет?
Дима: «Нужно много лет пробовать, и если ничего не найдешь, значит, и нет». Я высказываю естественное возражение: а вдруг все-таки есть? Женя пессимистически заявляет: «Я больше ничего найти не смогу». Петя спрашивает у меня, я действительно сам не знаю, сколько будет решений, или я-то знаю точно, а спрашиваю только для разговора? Признаюсь, что сам я знаю точно. Тогда мальчики вообще перестают понимать, чего мне еще надо.
Тут вдруг Дима произносит какую-то туманную и довольно бессмысленную фразу, в которой, однако, фигурируют слова «самая левая коробочка». Я поскорее интерпретировал эту фразу в нужном мне направлении и стал рассуждать вслух. Возьмем первый шарик и положим в самую левую коробочку. Куда теперь можно положить второй шарик? Во вторую, третью, четвертую и пятую коробочки; всего четыре решения. Теперь первый шарик положим во вторую коробочку. Тогда второй можно положить в четыре оставшиеся: в первую, третью, четвертую и пятую коробочки — еще четыре решения. Теперь положим первый шарик в третью коробочку и т. д. Всего получается пять раз по четыре решения, то есть… двадцать решений! Вот так раз! Мальчики в полном ошеломлении, а я как можно скорее сворачиваю все дела и заканчиваю занятие.
На этот раз я бил без промаха. Теперь уже все дети без исключения занялись самостоятельными исследованиями — что-то дома перекладывали, рисовали, и в итоге — кто раньше, кто позже и частично с моей помощью — разобрались все же, почему для получения правильного ответа число 20 еще следует разделить пополам.
Детский вопрос: можно ли других людей в чем-то убедить?
Пятилетний экспериментатор?
Как-то уже не на кружке, но явно под его влиянием, у меня произошла такая беседа с сыном. Дима спросил меня, как вообще можно других людей в чем-то убедить. «Есть разные способы, — ответил я, — В физике, например, делают опыты». — «А-а, понятно». (Что такое физический опыт, Дима знает по книге Л. Л. Сикорука «Физика для малышей» — одному из наиболее блистательных шедевров научно-популярной литературы для маленьких.) «Вот, например, такой вопрос: какие предметы падают быстрее — легкие или тяжелые?» — «Конечно, тяжелые падают быстрее». — «Ты так думаешь. А другой человек может сказать, что предметы падают одинаково быстро». — «Ну-у нет!» — «А почему нет?» «Ну, ведь если мы возьмем камень и лист бумаги, то камень упадет быстрее!» — «Да. Значит, чтобы убедить этого другого человека, что он не прав, ты сделаешь опыт, верно? Возьмешь камень и лист бумаги и посмотришь, что упадет быстрее». — «Да». — «А теперь давай сделаем другой опыт».
Как невидимые круги сделать видимыми?
Идею этого опыта мне рассказали друзья. Сначала мы берем два одинаковых листа бумаги, и они, разумеется, падают одинаково медленно. После этого я комкаю один из листов и скатываю его в комок. Я хочу спросить, какой из листов теперь упадет быстрее, но Дима меня опережает. «А теперь вот этот (он показывает на комок) стал тяжелее». — «Почему!?!» — «Потому что он упадет быстрее». Вот, оказывается, как обстоит дело. Для того чтобы физический опыт мог вас в чем-то убедить, нужно сначала, чтобы ваша логика развилась до такого уровня, когда вы осознаете недопустимость логических кругов.
Бросаем в паре все, что попадается под руку
Я, однако, не унимаюсь. Мы продолжаем бросать в паре все, что попадается под руку: пуговицу и большой тяжелый лист ватмана, пуговицу и гирю, пластмассовый пустотелый кубик и деревянный кубик того же размера и т. п. Дима обескуражен результатами; попытался было предположить, что пуговица тяжелее листа ватмана, но быстро отказался от этой мысли. «Значит, бывает по-разному. Иногда легкие вещи падают быстрее, а иногда тяжелые». Он уже почти готов удовлетвориться таким объяснением. И вдруг догадывается: «А-а, понимаю, папа! Это ему воздух мешает падать». — «Кому?» — «Лист большой, и ему воздух мешает падать, не пускает его. А пуговица маленькая, ей воздух меньше мешает». — «Правильно! А если бы воздуха не было, что бы тогда было?» — «Тогда бы все падали одинаково». — «Молодец. А когда я лист бумаги скомкал в комочек, что произошло?» Дима подбирает слова, чтобы сформулировать ответ. Меня подводит нетерпение — я отвечаю за него: «Воздух ему перестает мешать». Но Дима меня поправляет: «Нет, не перестает, а начинает меньше мешать».
Принципиальное отступление от принципа
Я уже писал о своем принципе: никогда не пытаться «внедрить» в ребенка свою точку зрения, даже намеком. Но в иерархии принципов есть еще один, более важный: ни одному принципу не должно следовать с железной непреклонностью.
У каждого из нас есть «внутренний редактор». Он следит за тем, чтобы мы рассуждали, писали, говорили, поступали в соответствии с общественными нормами. Этот «редактор», по-видимому, нам необходим. Без него мы стали бы непонятными для других. Но он же сковывает творчество. Внутренне свободен и открыт для творчества тот, кто чтит принцип: ни одному принципу не должно следовать с железной непреклонностью! Кстати, дети нередко поступают так, будто следуют этому принципу. Это «творческая смелость» по неведению
И вот сейчас, мне кажется, удобный повод отступить от первого принципа. С явным намеком в голосе я задаю еще один вопрос о скомканном листе бумаги: «И что, разве он действительно становится при этом тяжелее?» Дима смеется таким тоном, будто хочет сказать, что только по недомыслию можно было ляпнуть такую глупость, и отвечает: «Ну конечно же, нет! Может быть, только совсем немножечко тяжелее».
Мысленный эксперимент, или Почему вопросы важнее ответов
Вечером, записывая нашу беседу в дневник, я обдумываю ее более внимательно. Я вдруг начинаю понимать: то, что мы произвели, не является в точном смысле слова физическим экспериментом. Эксперимент — это вопрос, заданный природе, с заранее неизвестным ответом. А в нашем случае Дима знал все ответы заранее. Не обязательно было реально бросать гирю с пуговицей — собственный опыт жизни ребенка в реальном физическом мире оказывался вполне достаточным, чтобы правильно предсказать результат этого опыта. Можно сказать, что ни один из опытов не сообщил ему ничего нового — если говорить только о фактах. Новым было лишь упорядочение известных фактов. По существу, мы произвели то же самое доказательство путем перебора логических возможностей, которое раньше проделали с шариками в коробочках.