В воде во время ныряния потребность сделать вдох некоторое время не ощущается. Это происходит до тех пор, пока парциальное давление углекислого газа в крови не достигнет величины, необходимой для возбуждения дыхательного центра. Но и в этом случае усилием воли можно подавить потребность сделать вдох и остаться под водой. При продолжительном воздействии углекислого газа на дыхательный центр его чувствительность понижается. Поэтому нестерпимая вначале потребность сделать вдох в дальнейшем притупляется.
Появление потребности сделать вдох является для ныряльщика сигналом к всплытию на поверхность. Если же ныряльщик не всплывает, то по мере расхода запасов кислорода, содержащегося в воздухе легких, начинают развиваться явления кислородного голодания, которые быстротечны и заканчиваются неожиданной потерей сознания. Кислородное голодание - наиболее частая причина гибели при нырянии.
На глубине парциальное давление кислорода соответственно выше, что позволяет ныряльщику дольше находиться под водой без ощущения признаков кислородного голодания. Например, на глубине 30 м (абсолютное давление воздуха 4 кг/см2) при снижении содержания кислорода в воздухе легких до 5% ныряльщик чувствует себя хорошо, так как парциальное давление кислорода в легких такое же, как в атмосферном воздухе.
Во время всплытия парциальное давление кислорода начнет быстро падать как за счет потребления кислорода, так и главным образом за счет снижения абсолютного давления. На глубине 20 и оно будет ниже 0,15 кг/см2, на глубине 10 м - ниже 0,1 кг/см2, у поверхности - ниже 0,05 кг/см2, а такое низкое парциальное давление кислорода приводит к потере сознания.
Длительность произвольной задержки дыхания у взрослого здорового человека в состоянии покоя невелика - в среднем после обычного вдоха она составляет 54-55 секунд, а после обычного выдоха - 40 сек. А вот профессионалы-ныряльщики могут задерживать дыхание на 3-4 минуты!
Кессонная болезнь и декомпрессия
Акваланг опасен тем, что в воздухе, заключенном в баллонах, содержится азот, этот инертный газ, который мы безболезненно вдыхаем постоянно. Между тем аквалангист, находящийся в добром здравии и умственно полноценный, пытаясь побить собственный рекорд глубины погружения, может нырнуть и не вынырнуть назад. На глубине от 30 до 100 метров - цифра эта бывает различной для разных пловцов - он сходит с ума и захлебывается; в сущности, он совершает самоубийство в состоянии невменяемости.
Причиной тому - азотный наркоз, который Кусто - один из первых, кто наблюдал это явление, и один из немногих, испытавших его на себе, но оставшихся в живых, - назвал "глубинным опьянением". Вначале ныряльщик чувствует себя на седьмом небе, он счастлив, как никогда в жизни. Он беззаботен и беспечален. Он сверхчеловек, властелин над самим собой и над всем, что его окружает. Акваланг ему больше не нужен. Он может, смеясь, протянуть загубник проплывающей мимо рыбе. И затем умереть, опустившись на дно.
Это явление объясняется нарушением работы мозговых центров в результате вдыхания азота под большим давлением. Однако есть кое-что пострашнее. Как аквалангистов, так и водолазов и рабочих, производящих работы в кессонах, наполненных сжатым воздухом, подстерегает одинаковая опасность - опасность проникновения азота в кровь и распространения его по различным органам.
На определенной глубине в кровь человека под давлением начинает проникать азот. Если уменьшение давления происходит чересчур резко, водолаз начинает ощущать нечто вроде щекотки. Иных предупредительных сигналов он не чувствует. Причиной внезапной смерти или паралича является газовая эбмболия - закупорка артерии пузырьками азота. Чаще же растворившийся в тканях азот начинает выделяться в суставах, мышцах и различных органах человеческого тела, заставляя человека испытывать адские мучения. Если его тотчас же не поместить в декомпрессионную камеру, он может стать калекой или погибнуть.
Случаи столь таинственной смерти заинтересовали английского ученого Джона Холдена, который нашел способ спасения от этой болезни. Способ этот стал применяться в ВМФ США с 1912 года. Заключается он в том, что пострадавшего поднимают на поверхность постепенно, выдерживая его на каждой остановке в течение определенного отрезка времени с тем, чтобы азот успевал удалиться из организма водолаза, попав сначала в кровь, а затем в легкие.
Естественно, в холденовской таблице безопасного подъема, предусматривающей такие декомпрессионные остановки, учитывается время нахождения пловца под давлением и величина давления. При спусках на большую глубину на подъем уйдет больше времени, чем на работу. Усталость и холод или же срочность задания иногда вынуждают пловцов сократить декомпрессионный период. А это может привести к непоправимым последствиям.
Хорошо подготовленные, дисциплинированные боевые пловцы строго соблюдают декомпрессионный режим. Они стремятся свести риск до минимума. Но ловцы губок по-прежнему становятся калеками вследствие кессонной болезни и по-прежнему от нее, насколько известно, ежегодно гибнут беспечные аквалангисты-спортсмены.
Кроме кессонной болезни, ныряльщика, поднимающегося на поверхность слишком быстро, поджидает еще одна опасность. В случае неожиданного повреждения акваланга пловец при срочном подъеме может инстинктивно задержать дыхание. Тогда находящийся у него в легких воздух по мере уменьшения давления воды станет расширяться и повредит легкие. Когда он поднимется на поверхность, у него могут начаться конвульсивные движения и обильное кровотечение изо рта и носа. Ныряльщик, не пользующийся аквалангом, не страдает от баротравмы легких, поскольку воздух, который он вдохнул перед погружением, находился под обычным атмосферным давлением.
Разумеется, пловец не может тут же на месте оказать помощь своему товарищу, если у того повреждены легкие. Средств для оказания такой помощи не существует. Если из-за порчи дыхательного аппарата или по какой-то иной причине пловец поднимался на поверхность слишком быстро и получил кессонную болезнь, единственное, чем могут помочь ему товарищи, это надеть на пострадавшего водолазное снаряжение или акваланг и вместе с ним спуститься на достаточную глубину для декомпрессии. Применяя такой прием, можно облегчить краткий, но болезненный приступ кессонной болезни, однако в более трудных случаях, особенно если пострадавший потерял сознание, он не годится. В таких случаях, так же как при баротравме легких, пловца необходимо спешно поместить в декомпрессионную камеру.
Военные корабли, приспособленные для спуска водолазов обычно оборудованы такими камерами.
Все камеры построены по одному принципу. Это большие цилиндры с несколькими манометрами, телефонным аппаратом и множеством приборов. Некоторые камеры настолько велики, что в них во весь рост могут встать несколько человек. На одном конце камеры имеется тамбур с двумя дверьми, напоминающий спасательную камеру подводной лодки; это позволяет впускать или выпускать человека, не меняя давления в основном отсеке. На другом конце камеры имеется небольшой шлюзовый люк, используемыидля передачи пищи, питья, лекарств, которые понадобятся пациенту во время долгого затворничества. Все приборы, служащие для обеспечения безопасности, от насосов до электрических ламп, дублируются на случай выхода их из строя.
Заболевшего водолаза помещают в камеру. С ним остается врач, поддерживающий связь с медицинским персоналом, находящимся снаружи. Двери задраиваются, внутрь накачивается воздух до тех пор, пока пузырьки азота в организме не уменьшатся в объеме и боли не исчезнут. После этого начинают снижать давление в соответствии с таблицами декомпрессии Врач наблюдает за состоянием больного в течение всей это процедуры.
Врач и пациент могут подчас оставаться в заточении более суток; декомпрессионный метод Холдена является лишь профилактической мерой, для лечения же требуются более значительные "дозы". Если пациент умирает, врач остается в камере до окончания декомпрессии, иначе он сам станет жертвой кессонной болезни.
* * *
Таким образом, подводному пловцу угрожают опасности двоякого рода: физические и физиологические.
К физическим опасностям, возможным даже на небольших глубинах (до 30 метров) относятся:
- повреждения органов слуха (разрыв барабанных перепонок);
- разрыв кровеносных сосудов в результате внезапного разрежения воздуха в маске или в гидрокостюме;
- закупорка кровеносных сосудов в результате возникновения избыточного давления в легких;
- кровоизлияния во внутренних органах;
- переохлаждение организма;
- непроизвольное выталкивание на поверхность вследствие избыточного давления воздуха в гидрокостюме
Физиологические опасности связаны, в основном, с проблемой дыхания под водой. К ним относятся: