Да, могли. Вспомним, параболические зеркала, согласно легенде, использовал еще древний Архимед, сжигая римские корабли, атаковавшие его родные Сиракузы. Тут же задача была куда проще: надо было лишь сконцентрировать в точку отраженное световое излучение. Но эта задача выполняется в любом зеркальном телескопе, а их, слава богу, начали строить еще в прошлом веке.
Вопрос другой, насколько эффективно работала такая система? Пожалуй, еще хуже, чем те звукопеленгаторы, которыми была оснащена наша армия перед началом Второй мировой войны. Система могла работать лишь в стерильных условиях; любая посторонняя засветка приводила бы к тому, что батарея лупила бы в белый свет, как в копеечку, и ее КПД был бы близок к нулю. В чем, наверное, и убедились ее создатели. И эстафету переняли у них создатели лазера.
В принципе его устройство не содержит ничего такого, что не было известно физикам 1940-х годов. Так что вполне можно допустить: не только в США или в СССР отыскались светлые головы, способные придумать и сконструировать квантовый генератор. И в Германии вполне могли быть специалисты соответствующего уровня.
Косвенным тому доказательством может послужить хотя бы такой факт. Совсем недавно стало достоверно известно, что прототип первой ламповой ЭВМ был создан не в США после окончания Второй мировой войны, а несколькими годами раньше, в недрах министерства связи воюющего рейха. Однако разработка не была доведена до конца по одной простой причине – в Германии 1944 года не нашлось «лишних» несколько тысяч радиоламп, необходимых для опытов – все они шли на фронт, использовались в военных передатчиках и приемниках.
Иное дело, насколько велика могла быть мощность такого лазера? Для чего он мог использоваться? Вряд ли мощность его была достаточной для того, чтобы огненным лучом разрезать самолеты в воздухе – это довольно трудная задача и для современных лазерных систем. А вот использовать лазерный луч для ослепления пилота, а еще вернее – для целеуказания тем же зениткам. Ведь отражение лазерного луча уловить куда проще, система будет куда меньше страдать от посторонних засветок.
Но, согласитесь, даже будучи доведена до стадии серийного производства, такая система никак не тянет на роль «супероружия», способного повернуть вспять ход Второй мировой войны. Это вам все-таки не гиперболоид…
Была и еще одна причина не доводить данное изобретение до серийного производства. Наведение зенитной артиллерии и прочих средств противовоздушной обороны с помощью радаров оказалось куда практичнее и привлекательнее со многих точек зрения. И немцы об этом знали. О том свидетельствует хотя бы такая история.
Всевидящее око
Когда весной 1939 года германская секретная служба получила донесение о том, что в Англии разрабатывается система оборонных мероприятий, согласно которой фашистские самолеты должны быть перехвачены и уничтожены в воздухе задолго до подхода к побережью Великобритании (очевидно, речь шла о радарах), Геринг тотчас издал приказ: выделить один цеппелин и предписать командиру дирижабля несколько суток курсировать в небе над Балтийским морем. Оснащенный радиоаппаратурой воздушный гигант должен был, по мысли Геринга, засечь радарные установки врага. Однако по возвращении цеппелина экипаж доложил: следов радарной сигнализации не обнаружено.
Немцы успокоились. Никому и в голову не пришло, что установки англичан тут же отключались, стоило медленно летящему разведчику приблизиться к зоне видимости радаров. Каково же было изумление горе-стратегов от блицкрига, когда впоследствии обнаружилось, что на побережье Англии безотказно функционируют двадцать радарных установок.
«Идея радиолокации возникла независимо у разных лиц и в разных странах мира, после того как импульсная техника оказалась пригодной для обнаружения таких объектов, как самолеты и корабли. Вероятно, эта идея возникла почти одновременно в Америке, Англии, Германии и даже в Японии».
Так написано в официальной истории радара, изданной в США вскоре после окончания Второй мировой войны. Однако если относительно перечисленных стран в приведенной цитате все и справедливо, то почему здесь и словом не упомянуто об СССР? Наверное потому, что тогда пришлось бы признать: в нашей стране работы по радиолокации начались, как минимум, лет на десять раньше, чем за рубежом.
Вот свидетельство человека, стоявшего у истоков отечественной радиолокации – профессора П. К. Ощепкова.
«Апрель 1932 года. Я нахожусь в составе команды Псковского зенитного артиллерийского полка, – пишет он в своих воспоминаниях. – Перед нами поставлена задача в максимально короткий срок овладеть специальностью зенитчика.
За полгода мы должны пройти общевойсковую подготовку и овладеть теорией и практикой зенитной артиллерийской стрельбы. Из нас должны сделать командиров запаса зенитных артиллерийских взводов».
Командир полка В. М. Чернов оказался человеком большой эрудиции и высокой культуры. Он не раз говорил подчиненным, что техника того времени находилась лишь в начальной стадии развития техники зенитной стрельбы, что авиация противника делает все большие успехи в отношении увеличения скорости и потолка своих полетов и что поэтому любые наши текущие усовершенствования в технике стрельбы могут со временем оказаться не только устаревшими, но и совсем непригодными.
Основным методом стрельбы по самолетам тогда был табличный метод. В специальных книжках-таблицах был приведен свод расчетных данных для стрельбы. Для всевозможных точек воздушного пространства в зоне досягаемости орудий заранее были рассчитаны установочные данные для прицела, дистанционной трубки взрывателя снаряда, угла упреждения и т. д. Но, для того чтобы пользоваться таблицами, надо было очень быстро и с большой точностью определить курс полета самолета, его высоту, скорость и местонахождение (то есть дальность до него), а потом с минимальной потерей времени отыскать нужную графу в таблицах и с еще большей скоростью скомандовать найденные установочные данные орудийному расчету. На это уходили драгоценные секунды, в течение которых самолет мог далеко сместиться от места его засечки, и вероятность встречи снаряда с ним катастрофически падала…
«В условиях бурного развития авиации тех дней люди должны были не только непрерывно совершенствовать свои знания, но и сами в какой-то мере превратиться в „человека-автомата“.
Учебников по теории зенитной артиллерийской стрельбы в ту пору было мало, достать их было трудно. На занятиях мы, конечно, не могли всего запомнить, да и рассказывалось-то нам не все. Вот я и решил тогда написать книжку по теории зенитной артиллерийской стрельбы для внутриполкового обращения. Руководство полка меня в этом поддержало. За книжку я принялся с большим желанием, старался написать как можно доходчивее, снабдил ее рисунками и схемами. Дело двигалось успешно, и примерно через три месяца первая написанная мною книжица под названием «Теория зенитной артиллерийской стрельбы» была отпечатана на стеклографе и пошла по рукам. Ею пользовались на занятиях, по ней даже задавали уроки.
Вероятно, как и во всем первом, в ней было немало промахов и упущений. Не знаю, насколько полезной она оказалась для других, но для меня была чрезвычайно полезной. В процессе работы над ней я глубоко прочувствовал теорию зенитной артиллерийской стрельбы и понял многие ее слабые места. Я понял, что время, именно время, решает успех всего дела. Поэтому время должно быть сведено до минимума во всех процессах этой техники – от момента засечки местонахождения цели до момента встречи с нею выпущенного нами снаряда. Эта мысль крепко тогда засела мне в голову и не покидает меня до сих пор, хотя мировая техника достигла в этом направлении колоссального прогресса.
Говорят, что цель, поставленная перед собой, дается только тем, кто ее преследует неотступно. Я стал все больше и больше думать о том, чтобы найти пути для уменьшения работного времени – таким термином определяется время, необходимое для решения задачи или для приведения в действие механизмов.
Очень скоро анализ задачи привел меня к мысли о том, что некоторые команды из числа подаваемых орудийному расчету можно исключить.
Мне удалось математически показать, что при любых заданных углах места (то есть углах наклона цели к горизонту) для каждой конкретной дальности до цели числовое значение прицела и числовое значение дистанционной трубки взрывателя находятся в определенном соотношении. Это соотношение можно не только выразить в виде математической формулы, но и построить в виде графика непосредственно на прицельном барабане орудия. Тогда при подаче только одной команды, например при подаче команды значения трубки, можно будет одновременно установить и прицел и цифру дистанционного кольца трубки. Это означало, что из четырех команд, подаваемых орудийному расчету, одну можно исключить. Тем самым время, необходимое на подачу команд, уменьшится, и уменьшится довольно значительно, – по моим подсчетам, примерно на 25 процентов.