20
Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве», с. 22.
21
Цёлльнер обратился в спиритуализм в 1875 г., когда побывал в лаборатории Крукса — первооткрывателя элемента таллия, изобретателя катодно-лучевой трубки, редактора научного журнала Quarterly Journal of Science. Катодно-лучевая трубка Крукса произвела революцию в науке: каждый, кто смотрит телевизор, пользуется компьютерным монитором, играет в видеоигры или проходит рентгеновское обследование, обязан всему этому знаменитому изобретению Крукса.
Крукс не был сумасбродом. Он занимал видное положение в британском научном сообществе, его профессиональных наград хватило бы на украшение целой стены. В 1897 г. его посвятили в рыцари, в 1910 г. удостоили ордена «За заслуги». Живой интерес к спиритуализму пробудила в нем трагическая смерть брата Филипа, в 1867 г. умершего от желтой лихорадки. Крукс стал видным членом, а позднее и президентом Общества паранормальных (психических) исследований, в которое входили многие выдающиеся ученые конца XIX в.
22
Процитировано в: Руди Рукер «Четвертое измерение» (Rudy Rucker, The Fourth Dimension, Boston: Houghton Mifflin, 1984), c. 54.
23
Для того чтобы представить себе, как можно распутать узлы в измерениях, числом превышающих три, вообразим себе два сцепленных кольца. Теперь сделаем двумерный поперечный разрез этой конструкции таким образом, чтобы одно кольцо лежало в плоскости разреза, а второе превратилось в точку (поскольку оно лежит перпендикулярно этой плоскости). Мы получили точку внутри окружности. В высших измерениях мы имеем возможность вывести эту точку за пределы окружности, не разрезая ни одно из колец. Это означает, что два кольца теперь разделены, что нам и требовалось. Значит, узлы в условиях многомерности всегда можно развязать, потому что для этого «достаточно места». Обратите также внимание: вывести точку за пределы окружности в трехмерном пространстве невозможно, по той же причине в мире трех измерений узлы остаются завязанными.
24
Ничего странного не было в том, что этот роман написало духовное лицо: теологи англиканской церкви одними из первых ввязались в бой, вызванный сенсационным процессом. Бессчетное множество веков священники искусно уклонялись от таких вечных вопросов, как «Где находятся рай и ад?» и «Где живут ангелы?». Теперь же они нашли удобное место для этих «небесных тел» — четвертое измерение. Христианский спиритуалист A. T. Скофилд в своем труде 1888 г. «Другой мир» пространно доказывал, что Бог и духи пребывают в четвертом измерении. (А. Т. Скофилд писал: «Следовательно, мы приходим к выводу, что, во-первых, мир, превосходящий наш, не просто возможен, но и вероятен; во-вторых, что такой мир может считаться четырехмерным; и в-третьих, что духовный мир согласуется в своих мистических законах… с тем, что по аналогии можно назвать законами, языком и притязаниями четвертого измерения» (процитировано в: Руди Рукер «Четвертое измерение», с. 56). Не желая отставать, в 1893 г. теолог Артур Уиллинк опубликовал трактат «Мир незримого», в котором утверждал, что пребывать в низменном четвертом измерении недостойно Бога. По мнению Уиллинка, единственным местом, достойным Бога, является пространство с бесконечным количеством измерений. (Артур Уиллинк писал: «После того как мы признаем существование четырехмерного пространства, не понадобится значительных усилий для того, чтобы признать существование пятимерного пространства и т. д., вплоть до пространства с бесконечным количеством измерений» (процитировано там же, с. 200).) — Прим. авт.
25
Пер. В. Чухно. — Прим. пер.
26
Уэллс не первым предположил, что время можно рассматривать как четвертое измерение нового типа, отличное от пространственных. Жан д’Аламбер называл время четвертым измерением в написанной для Энциклопедии Дидро статье 1754 г. «Размерность». — Прим. пер.
27
Пер. К. Морозова. — Прим. пер.
28
Герберт Уэллс «Машина времени» (H. G. Wells, The Time Machine: An Invention, London: Heinemann, 1895), c. 3.
29
Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), c. xxi.
30
Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983). Согласно Хендерсон, «четвертое измерение привлекало внимание таких видных представителей мира литературы, как Герберт Уэллс, Оскар Уайльд, Джозеф Конрад, Форд Мэдокс Форд, Марсель Пруст и Гертруда Стайн. Из музыкантов четвертым измерением живо интересовались Александр Скрябин, Эдгар Варез, Джордж Антейл, оно вдохновляло их поиски новых форм во имя высшей реальности» (там же, c. xix-xx).
31
Работа Ленина «Материализм и эмпириокритицизм» сегодня имеет большое значение по той причине, что она оставила заметный след в современной советской и восточноевропейской науке. К примеру, известное высказывание Ленина о «неисчерпаемости электрона» отражало диалектическую идею, согласно которой мы найдем новые уровни и противоречия при любой попытке проникнуть в суть материи. Так, галактики состоят из меньших по размеру звездных систем, которые в свою очередь содержат планеты, состоящие из молекул, которые состоят из атомов, содержащих электроны, а те, в свою очередь, «неисчерпаемы». Это один из вариантов теории «миров, заключенных в других мирах».
32
Владимир Ленин. Материализм и эмпириокритицизм // Карл Маркс, Фридрих Энгельс и Владимир Ленин. О диалектическом материализме. — М.: Прогресс, 1977. — С. 305–306.
33
Владимир Ленин. Материализм и эмпириокритицизм // Карл Маркс, Фридрих Энгельс и Владимир Ленин. О диалектическом материализме. — М.: Прогресс, 1977.
34
Процитировано в: Рукер «Четвертое измерение», с. 64.
35
Представим себе, что некий флатландец построил конструкцию из шести смежных квадратов, образующих подобие креста. С точки зрения флатландца, квадраты жестко соединены между собой. Из нельзя повернуть или иначе переместить относительно соединенных сторон. А теперь представим, что мы взяли эту конструкцию и решили отогнуть некоторые квадраты, чтобы образовался куб. Стыки между квадратами, жесткие в двумерном пространстве, в мире трех измерений легко поддаются, превращаясь в сгибы. Сложить куб настолько просто, что флатландец даже не заметит этого.
Но если флатландец очутится внутри куба, он обратит внимание на неожиданное явление. Каждый квадрат ведет в другой квадрат. «Внешней стороны» у куба нет. Всякий раз, когда флатландец переходит из одного квадрата в другой, он плавно, даже не замечая этого, сгибается под углом 90° в третьем измерении и попадает в следующий квадрат. Снаружи этот дом выглядит как самый обычный квадрат, но тот, кто войдет в него, обнаружит беспорядочное нагромождение квадратов, каждый из которых немыслимым образом ведет в следующий. Вошедшему покажется невероятным то, что этот единственный квадрат способен вместить шесть других квадратов.
36
Якоб Броновски «Восхождение человека» (Jacob Bronowski, The Ascent of Man, Boston: Little, Brown. 1974), c. 247.
37
Процитировано в: Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна» (Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford: Oxford University Press, 1982), c. 131.
38
Пассажирам поезда показалось бы, что поезд стоит, а станция метро приближается к нему. Они увидели бы, что платформа и все стоящие на ней сложены гармошкой. Таким образом, мы приходим к противоречию: пассажиры в поезде и люди на станции считают друг друга подвергнувшимися сжатию. Разрешение этого парадокса представляется несколько каверзным. — Прим. авт.
Как правило, нелепо полагать, что из двух человек каждый может быть выше другого. Но в данной ситуации мы видим двух людей, каждый из которых прав, считая второго подвергшимся сжатию. На самом деле противоречия тут нет, так как речь идет о времени, в ходе которого производится измерение, а время, как и пространство, в данном случае искажено. В частности, события, которые выглядят одновременными в одной системе отсчета, не являются одновременными, если рассматривать их в другой системе отсчета.