Таким образом, к началу исследований Герца электрические колебания были изучены и теоретически и экспериментально. Герц с его обостренным вниманием к этому вопросу, работая в высшей технической школе в Карлсруэ, нашел в физическом кабинете пару индукционных катушек, предназначавшихся для лекционных демонстраций. «Меня поразило, — писал он, — что для получения искр в одной обмотке не было необходимости разряжать большие батареи через другую и более того, что для этого достаточны небольшие лейденские банки и даже разряды небольшого индукционного аппарата, если только разряд пробивал искровой промежуток». Экспериментируя с этими катушками, Герц пришел к идее своего первого опыта;
Экспериментальную установку и сами опыты Герц описал в опубликованной в 1887 г. статье «О весьма быстрых электрических колебаниях». Герц описывает здесь способ генерации колебаний, «приблизительно в сто раз быстрее наблюденных феддерсеном». «Период этих колебаний, — пишет Герц, — определяемый, конечно, лишь при помощи теории, измеряется стомиллионными долями секунды. Следовательно, в отношении продолжительности они занимают среднее место между звуковыми колебаниями весомых тел и световыми колебаниями эфира». Однако ни о каких электромагнитных волнах длиной порядка 3 м Герц в этой работе не говорит. Все, что он сделал, это сконструировал генератор и приемник электрических колебаний, изучая индукционное действие колебательного контура генератора на колебательный контур приемника при максимальном расстоянии между ними 3 м.
Колебательный контур в окончательном опыте представлял собой проводники С и С1, находящиеся на расстоянии 3 м друг от друга, соединенные медной проволокой, в середине которой находился разрядник индукционной катушки. Приемник представлял собой прямоугольный контур со сторонами 80 и 120 см, с искровым промежутком в одной из коротких сторон. Индукционное действие генератора на приемник обнаруживалось слабой искоркой в этом промежутке.
Рис. 43. Опыт Герца
Затем Герц сделал приемный контур в виде двух шаров диаметром 10 см, соединенных медной проволокой, в середине которой был искровой промежуток. Описывая результаты опыта Герц заключал: «Я думаю, что здесь впервые было показано на опыте взаимодействие прямолинейных разомкнутых токов, имеющее такое большое значение для теории». В самом деле, как мы знаем, именно разомкнутые цепи позволили сделать выбор между конкурирующими теориями. Однако Герц ни в этой первой работе, ни в трех после дующих о максвелловских электромаг нитных волнах не говорит, он их еще не видит. Он говорит пока о «взаимодействии» проводников и рассчитывает это взаимодействие по теории дальнодействия. Проводники, с которыми здесь работает Герц, вошли в науку под назва нием вибратор и резонатор Герца Резонатором проводник называется по тому, что наиболее сильно возбуждаетcя колебаниями, резонирующими с его собственными колебаниями.
В следующей работе «О влиянии ультрафиолетового света на электрический разряд», поступившей в «Протоколы Берлинской Академии наук» 9 июня 1887 г., Герц описывает важное явление, открытое им и получившее впоследствии название фотоэлектрического эффекта. Это замечательное открытие было сделано благодаря несовершенству герцевского метода детектирования колебаний: искры, возбуждаемые в приемнике, были настолько слабы, что Герц решил для облегчения наблюдения поместить приемник в темный футляр. Однако оказалось, что максимальная длина искры при этом значительно меньше, чем в открытом контуре. Удаляя последовательно стенки футляра, Герц заметил, что мешающее действие оказывает стенка, обращенная к искре генератора. Исследуя тщательно это явление, Герц установил причину, облегчающую искровой разряд приемнику—ультрафиолетовое свечение искры генератора. Таким образом, чисто случайно, как пишет сам Герц, был открыт важный факт, не имевший прямого отношения к цели исследования. Этот факт сразу же привлек внимание ряда исследователей, в том числе профессора Московского университета А. Г. Столетова, особенно тщательно исследовавшего новый эффект, названный им актиноэлектрическим.
Опыт с вибратором Герца
А. Г. Столетов. Александр Григорьевич Столетов родился 10 августа 1839 г. во Владимире в купеческой семье. По окончании Владимирской гимназии Столетов поступил на физико-математический факультет Московского университета и был оставлен там для подготовки к преподавательской деятельности. С 1862 по 1865 г. Столетов был в заграничной командировке, во время которой познакомился с видными учеными Германии Кирхгофом, Магнусом и другими. В 1866 г. Столетов становится преподавателем университета и читает курс математической физики. В 1869 г. он защищает магистерскую диссертацию «Общая задача электростатики и ее приведение к простейшему случаю», после чего утверждается доцентом университета.
Защитив в 1872 г. докторскую диссертацию «Исследование о функции намагничивания мягкого железа», Столетов утверждается экстраординарным профессором Московского университета и организует физическую лабораторию, подготовившую многих русских физиков. В этой лаборатории Столетов - начал в 1888 г. свои актиноэлектрические исследования.( Подробнее о лаборатории А Г. Столетова см вкн Тепляков ГМ,Кудрявцев П. С Александр Григорьевич Столетов. - М.- Просвещение, 1966 )
Герц в своей статье о влиянии ультрафиолетового света на электрический разряд указывал на способность ультрафиолетового излучения увеличивать искровой промежуток разрядника индуктория и аналогичных разрядников. «Условия, при которых он проявляет свое действие в таких разрядах, конечно, очень сложны, и было бы желательно исследовать действие в более простых условиях, в частности устранив индуктории», — писал Герц. В примечании он указывал, что ему не удалось найти условий, которыми можно было бы заменить «так мало понятный процесс искрового разряда более простым действием». Это впервые удалось только Г. Гальваксу (1859-1922). Но Галь-вакс, а также Видеман и Эберт исследовали, как и Герц, действие света на электрические разряды высокого напряжения.
Столетов решил исследовать, «получится ли подобное действие при электричестве слабых потенциалов». Указав на преимущества такого метода, Столетов продолжал: «Моя попытка имела успех выше ожидания. Первые опыты начаты около 20 февраля 1888 г. и продолжались непрерывно... по 21 июня 1888 г.». Назвав исследуемое явление актиноэлектрическим, Столетов сообщает, что он продолжал опыты и во второй половине 1888 г. и в 1889 г. и еще не считает их законченными.
Для получения фотоэффекта (термин, вытеснивший термин Столетова) Столетов пользовался установкой, являющейся прототипом современных фотоэлементов. Два металлических диска (Столетов называл их то «арматурами», то «электродами») — один изготовленный из металлической сетки, а другой сплошной — соединялись с полюсами гальванической батареи через гальванометр, образуя конденсатор, включенный в цепь батареи. Перед сетчатым диском помещался дуговой фонарь, свет которого, проходя через сетку, падал на металлический диск.
«Уже предварительные опыты... убедили меня, что не только батарея в 100 элементов..., но и гораздо меньшая дает во время освещения дисков несомненный ток в гальванометре, если только цельный (задний) диск соединен с ее отрицательным полюсом, а сетчатый (передний) — с положительным.
Так просто и чисто было воспроизведено явление фотоэлектрического тока. Именно Столетов вывел это явление из путаницы сложных отношений электрического разряда, придумал простую конструкцию первого фотоэлемента и тем самым положил начало плодотворному изучению фотоэффекта. Столетов впервые ясно и четко показал униполярность эффекта: «Я с самого начала моих исследований категорически настаивал на совершенной униполярности актиноэлектрического действия, т. е. на нечувствительности положительных зарядов к лучам». Он же доказал безынерционность действия: «Актиноэлектрический ток мгновенно (говоря практически) прекращается, как скоро лучи задержаны экраном»; показал, что фотоэффект связан «с поглощением активных лучей» освещаемым электродом: «Лучи должны поглощаться отрицательно заряженной поверхностью. Очевидно, важно при этом поглощение в тончайшем верхнем слое электрода, в том слое, где, так сказать, сидит электрический заряд».
Исследуя время, прошедшее с освещения электрода до появления фототока (это было очень трудно и не очень надежно), Столетов нашел, что это время «весьма ничтожно, другими словами, действие лучей можно считать, практически говоря, мгновенным». «Практически говоря, ток появляется и исчезает одновременно с освещением». Столетов нашел также, что зависимость фототока от напряжения не является линейной; «Ток приблизительно пропорционален электродвижущей силе лишь при наименьших величинах .этой последней, а затем, по мере ее возрастания, хотя и растет также, но все медленнее».