разряд (рис. 21-6). Такой вид гиперактивности рассматривается как проявление эпилептизации
нейрона.
Указанный сдвиг баланса между возбуждением и торможением может быть обусловлен
либо первичным усиленным возбуждением нейрона, преодолевающим тормозной
контроль, либо первичной недостаточностью тормозного контроля. Первый механизм
реализуется значительной деполяризацией мембраны и усиленным входом Na+ и Са2+ в
нейрон, второй - расстройством механизмов, обеспечивающих гиперполяризацию
мембраны: нарушением выхода К+ из нейрона и входа Cl- в нейрон.
Существенным эндогенным регулятором активности нейрона является γ-аминомасляная
кислота (ГАМК). Она вызывает торможение нейрона при связывании со своим
рецептором. В результате усиливается поступление Cl- в нейрон.
Рис. 21-6.
Различные виды спонтанной активности нейрона в эпилептическом очаге, вызванном
столбнячным токсином в двигательной зоне коры головного мозга кошки. Кривые А и В -
потенциалы, регистрируемые с поверхности мозга в эпилептическом очаге (ЭкоГ).
Кривые Б и Г - запись электрической активности нейронов, выполненные с помощью
внутриклеточного отведения. Нейрон может генерировать с разной частотой регулярные
потенциалы действия. На кривой Г показано завершение потенциала высокочастотными
разрядами. В это время на ЭкоГ (кривая В) в зоне очага появляется спайковый разряд
(указан стрелкой)
При растормаживании нейрона в связи с ослаблением торможения и деполяризацией
мембраны происходит усиление поступления Са2+ в нейрон. Кроме того, Са2+, находясь
уже в цитозоле, нарушает поступление С1- в нейрон, ослабляя, таким образом, изнутри
ГАМКергическое торможение. С этим связана эпилептизация нейрона, возникающая под
влиянием конвульсантов, которые нарушают ГАМКергическое торможение. Многие конвульсанты
(например, пенициллин, коразол и др.) оказывают сложное действие на нейрон, одновременно
активируя возбуждающие и инактивируя тормозные механизмы.
Хроническая стимуляция нейрона (например, при прямом электрическом раздражении, синаптическом воздействии, под влиянием возбуждающих аминокислот и др.) даже
слабой интенсивности может с течением времени привести к гиперактивации нейрона. С
другой стороны, выключение афферентации нейрона также обусловливает его
гиперактивацию. Этот эффект объясняется повышением чувствительности нейрона и
нарушением тормозных процессов.
Таким образом, патологическая гиперактивация нейронов, их эпилептизация представляет
сложный комплекс разнообразных мембранных и внутриклеточных процессов. Для
подавления эпилептической активности целесообразно комплексное применение веществ, нормализующих основные патогенетические звенья процесса. Среди корригирующих
воздействий первостепенное значение имеют блокада поступления Са2+ и восстановление
тормозного контроля.
21.4. ГЕНЕРАТОРЫ ПАТОЛОГИЧЕСКИ УСИЛЕННОГО ВОЗБУЖДЕНИЯ (ГПУВ)
21.4.1. Понятие и общая характеристика
Расстройство деятельности ЦНС возникает при воздействии достаточно мощного потока
импульсов, способного преодолеть механизмы регуляции и тормозного контроля других
отделов ЦНС и вызвать их патологическую активность. Столь мощный поток импульсов
продуцируется группой гиперактивных нейронов, образующих генератор патологически
усиленного возбуждения (Г.Н. Крыжановский).
ГПУВ - это агрегат гиперактивных взаимодействующих нейронов, продуцирующий
неконтролируемый поток импульсов. Интенсивность и характер этого потока не соответствуют
поступающему сигналу и определяются только особенностями структурно-функциональной
организации генератора. Вследствие того, что нейроны генератора активируют друг друга, генератор способен самоподдерживать свою активность, не нуждаясь в постоянной
дополнительной стимуляции извне.
Возникая при повреждениях нервной системы, генератор становится патогенетическим
фактором развития процесса. Его образование имеет характер универсального механизма
и является типовым патологическим процессом, осуществляющимся на уровне
межнейрональных отношений. Электрофизиологическим выражением деятельности
генератора служат суммарные потенциалы составляющих его нейронов. В качестве
примера таких потенциалов можно привести электрическую активность, регистрируемую
в области генератора в гигантоклеточном ядре продолговатого мозга (рис. 21-7) и в
эпилептическом очаге в коре головного мозга, который является одним из видов
генератора.
Патогенетическое значение ГПУВ. Основное патогенетическое значение генератора
заключается в том, что он гиперактивирует тот отдел ЦНС, в котором он возник или с
которым он непосредственно связан, вследствие чего этот отдел приобретает значение
патологической детерминанты (см. разд. 21.5), формирующей патологическую систему
(см. разд. 21.6). Поскольку патологические системы лежат в основе соответствующих
нервных расстройств (нейропатологических синдромов), образование генератора является
начальным звеном этих расстройств.
21.4.2. Образование и деятельность генераторов патологически усиленного
возбуждения
Генератор может образовываться при действии разнообразных веществ экзогенной или
эндогенной природы, вызывающих либо нарушение механизмов тормозного контроля (что влечет
за собой растормаживание и гиперактивацию нейронов), либо непосредственную
гиперактивацию нейронов. В последнем случае тормозные механизмы сохранены, но они
функционально неэффективны и не способны нормализовать деятельность нейронов. Во всех
случаях обязательным условием образования и деятельности гене-
Рис. 21-7.
Характер вызванной активности в гигантоклеточном ядре кошки в норме и при
формировании в нем генератора после введения столбнячного токсина: А - реакция на
слабое одиночное раздражение икроножного нерва; реакция того же гигантоклеточного
ядра на одиночное раздражение той же силы того же нерва при формировании в ядре
генератора через 2 ч (Б), 3 ч (В) и 4 ч (Г) после введения в ядро столбнячного токсина: длительные, возрастающие со временем по частоте и амплитуде послеразряды, которые
могут продолжаться неопределенное долгое время, - генерирование интенсивного
самосдерживающего возбуждения
ратора является недостаточность торможения составляющих его нейронов.
Примером образования генератора при первичном нарушении торможения могут быть
генераторы, возникающие при действии столбнячного токсина, стрихнина, пенициллина и
других конвульсантов. Примером образования генератора при первичной
гиперактивации
нейронов могут быть генераторы, возникающие при усиленной и продолжительной
синаптической стимуляции, действии возбуждающих аминокислот (в частности,
глутамата), неглубокой ишемии и постишемической реперфузии ЦНС. Генератор может
возникать также при деафферентации нейронов после перерезки нервов и спинного мозга, с чем связаны деафферентационные болевые синдромы.
На ранних стадиях развития генератора, когда тормозные механизмы еще сохранены, а
возбудимость нейронов невысока, генератор активируется достаточно сильными стимулами, поступающими через определенный вход в составляющую его группу нейронов. На поздних
стадиях, когда возникает глубокая недостаточность тормозных механизмов и значительно
повышается возбудимость нейронов, генератор может активироваться различными стимулами из
разных источников, а также спонтанно.
21.5. ПАТОЛОГИЧЕСКАЯ ДЕТЕРМИНАНТА
21.5.1. Понятие и общая характеристика
Образование генератора не всегда имеет своим следствием возникновение патологических
реакций. При блокаде распространения генерируемого возбуждения механизмами
тормозного контроля генератор оказывается функционально изолированным и не
вызывает системных патологических эффектов. Патология возникает, если
гиперактивируемый под влиянием генератора отдел ЦНС активно влияет на другие
образования ЦНС, вовлекает их в патологическую реакцию и объединяет их в новую
организацию - патологическую систему (Г.Н. Крыжановский). Во многих случаях, в
частности на ранних стадиях образования патологической системы и в острых случаях, такой гиперактивный отдел ЦНС определяет характер деятельности патологической
системы, он приобретает значение патологической детерминанты. Роль патологической