Рейтинговые книги
Читем онлайн 9. Квантовая механика II - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 60

В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он ни­когда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водо­рода да атом гелия.)

§ 5. Еще немного органической химии

Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.

Фиг. 13.9. Изображение с по­мощью валентных связей молекулы бутадиена (1,3).

Мы можем опять затеять те же игры с лишней четверкой электронов, отвечающей двум двойным связям. Если ее убрать, то остается четыре атома углерода по одной линии. А как рас­считывать такую линию, вы уже знаете. «Но позвольте,— скажете вы,—я ведь только знаю, как решать бесконечную ли­нию». Однако решения для бесконечной линии включают также и решения для конечной. Следите. Пусть N — число атомов на прямой; пронумеруем их 1, 2, ..., N (фиг. 13.10).

Фиг. 13.10. Отрезок прямой с N молекулами.

В уравне­нии для амплитуды в точке 1 у вас не появится член для пере­хода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид и обладают всюду одинаковой абсолютной величиной. Но вспомните, что энергия зависит только от абсолютной вели­чины k, так что другим в равной мере законным решением было бы. И то же справедливо для любой суперпозиции этих двух решений. Вычитая их, мы получим решение sin kxn, а оно удовлетворяет требованию, чтобы амплитуда при х=0 была нулем. И оно все еще соответствует энергии Е0-2Аcoskb. Далее, подходящим выбором величины k можно также добиться, чтобы амплитуда в xN+1была тоже нулем. Для этого нужно, чтобы (N+1)kb было кратным p, т. е. чтобы

где s — целое число между 1 и N. (Берутся только положительные k, потому что каждое решение содержит и +k, и -k; перемена знака k опять дает то же состояние.) Для молекулы бутадиена N=4, так что имеется четверка состояний с

Уровни энергии можно теперь представить, пользуясь кру­говой диаграммой, похожей на бензольную. На сей раз возьмем полукруг, деленный на пять равных частей (фиг. 13.11).

Фиг. 13.11. Энергетические уровни бутадиена.

Точка внизу отвечает s=0, что не дает какого-либо состояния. То же самое справедливо для точки наверху, отвечающей s=N+1. Оставшиеся четыре точки дают четверку разрешенных энергий. Имеется четыре стационарных состояния, чего и следовало ожидать, судя по четырем базисным состояниям. В круговой диаграмме углы равны p/5, или 36°. Наинизшая энергия оказы­вается равной Е0 1,618A. (Каких только чудес не бывает в математике! Золотое сечение греков дает нам наинизшее энер­гетическое состояние молекулы бутадиена, как это следует из

нашей теории!)

Теперь уже ясно, как меняется энергия молекулы бутадиена, когда в нее вводят четверку электронов. Эта четверка заполнит два нижних уровня — каждый будет заполнен парой электро­нов с противоположными спинами. Полная энергия будет равна

Это выглядит вполне разумно. Энергия чуть пониже, чем просто у двух двойных связей, но связь не так сильна, как в бензоле. Во всяком случае, именно так химик анализирует некоторые ор­ганические молекулы.

Но в его распоряжении есть не только энергии, но и ампли­туды вероятности. Зная амплитуды для каждого состояния и зная, какие состояния заполнены, он может сообщить нам, какова вероятность нахождения электрона в каком-нибудь месте молекулы. Те места, где пребывание электрона более вероятно, вступают в игру при таких химических замеще­ниях, которые требуют, чтобы электрон обслуживал и другую группу атомов. Другие же места молекулы участвуют в таких замещениях, при которых молекула имеет тенденцию передать системе еще один электрон.

Подобные же идеи могут помочь нам получить правильное представление даже о таких сложных молекулах, как хлоро­филл, один из вариантов которого показан на фиг. 13.12.

Фиг. 13.12. Молекула хлоро­филла.

Обра­тите внимание, что двойные и одиночные связи образуют длинное замкнутое кольцо с двадцатью интервалами.

Лишние электроны двойных связей могут бегать по этому кольцу. При помощи метода независимых частиц можно получить всю совокупность энергетических уровней. От пе­реходов между этими уровнями возникают сильные линии поглощения, которые лежат в видимой части спектра и при­дают этой молекуле ее густой цвет. И другие сложные мо­лекулы, такие, как ксантофилл, от которого листья по­лучают красную окраску, можно изучить таким же точно способом.

В органической химии при работе с подобного рода теорией использу­ют еще одну идею. Она, пожалуй, самая удачная из всех (или по крайней мере в определенном смы­сле самая точная). Она отвечает на такой вопрос: в каких случаях получается особенно прочная химическая связь? Ответ очень интере­сен. Возьмем вначале для примера бензол и представим ряд со­бытий, которые произойдут, если мы начнем с шестикратно иони­зованной молекулы и примемся добавлять новые и новые электроны. Тогда нужно будет говорить о различных ионах бензола — отрицательных и положительных. Изобразим энер­гию иона (или нейтральной молекулы) как функцию числа элек­тронов. Если мы примем Е0=0 (мы не знаем, чему равно E0), то получим кривую, показанную на фиг. 13.13.

Фиг. 13.13. Сумма всех энергий электронов, ког­да нижние состояния на фиг. 13.8 заполнены n электронами (принято E0=0).

Для первых двух электронов наклон функции постоянен — это прямая линия. Затем для каждой очередной группы электронов он воз­растает, меняясь скачком от одной группы к другой. Наклон изменяется тогда, когда заканчивается заполнение системы уровней с одной энергией и очередному электрону приходится переходить к очередной более высокой системе уровней.

В действительности истинная энергия иона бензола совер­шенно непохожа на фиг. 13.13 из-за взаимодействий электронов и из-за электростатических энергий, которыми мы пренебрегли. Эти поправки, однако, меняются с n довольно плавно. Даже если бы их все учесть, на окончательной энергетической кривой все равно остались бы изломы при таких и, при которых как раз заполняются отдельные уровни энергии.

Рассмотрим теперь очень гладкую кривую, на которой в среднем укладываются все точки (фиг. 13.14).

Фиг. 13.14. Точки с фиг. 13.13 и плавная кривая. Молекулы с n=2, 6, 10 устойчивее остальных.

Можно сказать, что точки над этой кривой обладают энергией «выше чем нор­мальной», а точки под нею «ниже чем нормальной». И в общем случае следует ожидать, что у конфигураций с «ниже чем нор­мальной» энергией средняя устойчивость окажется повышенной. Обратите внимание, что конфигурации, которые значительно ниже кривой, всегда оказываются в конце одного из прямоли­нейных отрезков, а именно там, где электронов как раз хватает на то, чтобы заполнить «энергетическую оболочку», как ее на­зывают. Это очень точное предсказание теории. Молекулы и ионы особо устойчивы (по сравнению с прочими подобными кон­фигурациями), когда имеющиеся у них в наличии электроны как раз заполняют энергетическую оболочку.

Эта теория объяснила и предсказала некоторые весьма нео­бычные химические факты. Вот очень простой пример. Возьмем кольцо из трех атомов. Почти невозможно поверить, что химик сможет из трех атомов составить кольцо и сделать его устой­чивым. Но это было сделано. Энергетический круг для трех электронов показан на фиг. 13.15.

1 ... 13 14 15 16 17 18 19 20 21 ... 60
На этой странице вы можете бесплатно читать книгу 9. Квантовая механика II - Ричард Фейнман бесплатно.
Похожие на 9. Квантовая механика II - Ричард Фейнман книги

Оставить комментарий